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A non-uniform equivalent cable model of membrane voltage changes in a passive
dendritic tree extending Rall’s equivalent cylinder model is presented. It is obtained
from a combination of cable theory with the continuum approach. Replacing the
fine structure of the branching dendrites by an equivalent, conductive medium
characterized by averaged electrical parameters, the one-dimensional cable equations
with spatially varying parameters are derived. While these equations can be solved
in general only numerically, we were able to formulate a general branching condition
(comprising Rall’s 3/2 power relationship as a special case) under which analytical
solutions can be deduced from those of the equivalent cylinder model. This model
allows dendritic trees with a greater variety of branching patterns than before to be
analytically treated.

1. Introduction

Most neurons of the vertebrate central nervous system (CNS) possess widely
branched dendritic trees. Despite recent advances in intracellular recording and
staining techniques, both in vivo and in vitro (e.g. Kater & Nicholson, 1973; Sakman
& Neher, 1983; Dingledine, 1984; Bottenstein & Sato, 1985), the role of dendritic
geometry in neuronal information processing has been difficult to assess. In this
situation, mathematical modelling proves to be an essential tool in addressing
conceptual questions arising there.

The usual mathematical description of the integrative function of a neuron with
passive dendritic trees proceeds from the application of one-dimensional cable
theory to approximate the potential distribution in a neuronal process. Representing
the cable by an RC ladder netwoik, the cable equations for membrane voltage
V= V(x, t) and longitudinal (axial) current i, =i,(x, t) in a cylindric segment of
length I and diameter d are as follows (x represents distance in the axial direction,
0=<x=<I and t is time):
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where i,, =1i,,(x, t) denotes membrane current consisting of a capactive component
and a resistive one (Fig. 1). R=4R,/(wd?) is axial resistance, C=C,,.m.d is
membrane capacitance, and G = G,,. w. d is membrane conductance (all quantities
per unit length). Combining these equations we obtain

v Vv
Tm——A’=5+ V=0 (1)
ot 0x

where A =(GR)™"? is the length constant and 7,, = C/G denotes the membrane
time constant (R;, C, and G, are the specific parameters intracellular (axial)
resistivity, membrane capacitance and membrane conductance; see Table 1 for the
notation used).
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FIG. 1. Scheme of a membrane cylinder (above) and its equivalent electrical circuit (below).

The cable eqn (1) can be solved for many relevant boundary conditions. Its
applicability, however, is restricted to the assumed simple geometry of a cylindric
process. In the case of branching structures as dendrites, the situation becomes
much more complex. One has to include boundary conditions at each branch point
and terminal, resulting in very complicated expressions for the corresponding
solutions. To cope with the problems, models of different complexity degree have
been developed (for review, see, e.g. Schierwagen, 1988).

A frequently applied model in neurophysiology is the Rall model of the nerve
cell (Rall, 1962). In short, it can be characterized as follows: if G,,, C,, and R; are
assumed to be uniform all over the neuron, the cell soma is represented by an
isopotential sphere, and each dendritic tree is treated as an “equivalent cylinder”.
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TABLE 1
Notation and definitions used

AXQR® ~ 8 <

@I Qo >

J@(')

transmembrane voltage relative to resting potential (mV)

diameter of dendritic branch (cm)

length of dendritic branch (cm)

distance along uniform cable (cm)

specific membrane resistance (kQ cm?)

specific (resting) membrane conductance (mS cm™2). G,, =1/R,,

specific axial resistivity (k) cm)

specific membrane capacitance (pF cm™2)

length constant (cm) . A =[(R,,/R;)(d/4)]"/?

time constant (ms) . 7, = R,,C,,

time (ms)

origin of spherical co-ordinate system

distance co-ordinate (cm)

angle co-ordinate. 9 =(8,, ¥,) with 0= 9, <27, 0= 9,=m

space angle containing a given dendritic tree

number of dendritic branches as function of distance variable (related to ®)
diameter of ith branch as function of distance variable (cm)

arithmetical mean of branch diameters as function of distance variable (cm).

1 ng()
i=1

ne(+) i

‘i@(‘)=

Same as d(-).
square mean of branch diameters as function of distance variable (cm).

. 1 ng(-) 1/2
de(')=[ ) d.(')z] .
n@() i=1

Same as d (+).

volume element of space angle ®

current (related to unit space angle) at distance r and time ¢ (pA)

voltage (related to unit space angle) at distance r and time ¢t (mV)

summed perimeter of all dendritic branches at distance r (related to unit space angle) (cm)
totai cross sectional area of all dendritic branches at distance r (related to unit space angle)
(cm?)

leak conductance per unit length (related to unit space angle) (mScm™"). G(r)=G,,. P(r)
capacitance per unit length (related to unit space angle) (WFcm™). C(r)=C,,. P(r)

axial resistance per unit length (related to unit space angle) (kQ cm™'). R(r) =R,/ A(r)
length parameter of non-uniform cable (cm). A(r) =[G(r)R(r)]""/?

generalized distance variable (dimensionless). Z(r) =j6 ds/A(s)

time constant of non-uniform cable (ms). r=C(r)/G(r)=C,,/G,,

dimensionless time variable. T=1t/7

diameter of branches at generation j (common to all branches) (cm)

length of branches at generation j (common to all branches) (cm)

number of branches at generation j (related to @)

length constant for the jth generation of branches (cm). A; = [(R,,,/R,~)(d},-/4)]'/2

particular, stationary solution of the special Riccati differential equation y'+y%/2=A.
v, =+v2A(A>0)
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Provided some conditions given below are fulfilled, a further simplification can be
made: they can be treated collectively as a single equivalent cylinder.

The symmetry requirements for the equivalent cylinder transformation are:

(i) all dendritic terminals are the same electrotonic distance from the soma;

(ii) the boundary conditions at all the terminals are the same;

(iii) at branch points the 3/2 power relation holds, i.e. dy/>=d}'*>+d3/? where
d, and d,, d, are the diameters of the parent and the daughter cylinders,
respectively.

The Rall model has significantly advanced our understanding of neuronal
behaviour (Jack et al, 1975; Redman, 1976; Rall, 1977). At its prime, this model
provided the kind of compromise between available experimental facts and analytical
tractability that is the philosophical goal of any modeller.

However, there is increasing evidence that some of the assumptions listed do not
hold in many real dendritic trees. For example, though some nerve cells e.g. spinal
motoneurons (Rall, 1977) and superior colliculus output neurons (Schierwagen &
Grantyn, 1986) have been found to obey assumption (iii), many others do not
(Hillman, 1979). The assumption (i) that all electrotonic path lengths in a dendritic
tree are equal has also been questioned recently (Schierwagen, 1986; Fleshman et
al., 1988). Hence, it is necessary to develop models which allow the relaxation of
some or all of the assumptions listed above.

The morphology-based branching cable model (Rall, 1959; Barrett & Crill, 1974;
Koch et al., 1982; Turner & Schwartzkroin, 1983; Turner, 1984; Schierwagen, 1986)
assumes no constraints on dendritic branching structure, i.e. only condition (ii) is
supposed to hold. The neuron is modelled by a number of individual cable segments,
the dimensions of which are based on anatomical reconstructions of the cell. In this
way, each dendritic tree is represented as a network of smooth, cylindrical cable
segments, and either steady state or transient calculations can be performed with
especially developed computer programs employing the analytical solutions of the
cable eqn (1). A major advantage of this electrical description is that it enables one
to calculate signal transfer between any two sites of a neuron. However, the
considerable expense of labour in constructing a detailed segmental representation
of a neuron is a serious drawback of this modelling approach. This is also true for
the compartmental description of a neuron introduced by Rall (1964) and later
adopted by others (e.g. Perkel & Mulloney, 1978; Edwards & Mulloney, 1984; Segev
et al., 1985; Shelton, 1985; van Hateren, 1986; Carnevale & Lebeda, 1987). In
addition, both the branching cable models and the compartmental models suffer
from the impossibility of exploring analytically the effects of parameter changes.

On the other hand, Rall mentioned that his theory can be applied to more general
dendritic geometries than that of the equivalent cylinder class (Rall, 1962). However,
this has been performed only in part. Goldstein & Rall (1974) studied changes of
action potential shape and velocity for non-uniform core conductor geometry by
numerical means. Strain & Brockman (1975) considered steady state membrane
voltage distribution in a cable model approximating typical neuron geometries.
Again, numerical methods had been used since analytical solutions were not
available.
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Very recently, several authors have constructed equivalent cable models with
varying diameters that were based on the actual dendritic morphology (Clements
& Redman, 1989; Fleshman et al., 1988; Rose & Dagum, 1988). Common to those
studies is the employment of exclusively numerical integration methods for determin-
ing the solutions to the differential equations.

Thus, a favourable mathematical description of a neuron would be as analytical
as possible while at the same time taking its morphology sufficiently into account.
The model presented here has been developed to approach these requirements.
Starting from the standard assumptions of cable theory, a new model for the
distribution of subthreshold membrane potential in branching dendritic trees is
derived. The method is a simple variant of the continuum approach which has been
used in many areas (Sanchez-Palencia, 1980; Bachmat & Bear, 1986), among them
current flow and diffusion in the extracellular space of the brain (Nicholson, 1973;
Nicholson & Phillips, 1982). Strictly speaking, the model results from a linear theory
of wave processes in branching cable structures of the tree type developed elsewhere
(Franct & Schierwagen, 1989). In the present case, the fine structure of the branching
dendrites is replaced by an equivalent, conductive medium characterized by averaged
electrical quantities. For potential and current in this equivalent medium, equations
are derived which turn out to be generalizations of the simple case of a uniform cable.

Analysis of these equations reveals that analytical solutions can be deduced from
those of the equivalent cylinder model, provided some geometrical-topological
conditions hold for the dendritic tree modelled. These result from the solution of
a special Riccati differential equation which comprises the 3/2 power relation (iii)
of the equivalent cylinder model.

2. Assumptions and Notation

An illustration of the three-dimensional geometry of a multipolar neuron is given
in Fig. 2. In these neurons dendrites are relatively straight, and they radiate in all
directions [cf. Ramén-Moliner (1962) for a classification of neurons according to
a qualitative description of their dendritic patterns, and Schierwagen (1987) for a
quantitative one using their fractal dimension]. Hence, the use of a system of
spherical co-ordinates (O, r, 9) seems most appropriate to the present problem. As
usual, O denotes the origin, r is the distance co-ordinate and 4 = (3,, ¥,) the angle
co-ordinate (Fig. 3).

Any given dendritic tree of a neuron a space angle ® can be assigned to in such
a way that the tree is completely contained in @, whereas the top of the cone @ is
in the origin O, and the stem of the dendritic tree emanates from O. This situation
of a single dendritic tree contained in a space angle ® will be dealt with in this
paper (Fig. 4).

We will consider a dendritic tree composed of branches each of which is assumed
to be circular in cross-section. The theory also includes branches which taper (or
flare) at a steady rate. The geometry of any dendritic tree is characterized by metrical
(e.g. diameters and lengths of branches) as well as topological (i.e. the connectivity
pattern of the branches) properties. These properties can be quantified by two
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F1G. 2. Three-dimensional plot of a multipolar neuron with soma in the centre of a sphere. The nerve
cell represented belongs to cat superior colliculus output neurons studied in Schierwagen & Grantyn
(1986) and Schierwagen (1986).

functions of the co-ordinates r, J: one is the diameter d of any individual branch
(different for each branch at distance r), the other is the number n of these branches
present at distance r. We suppose in the following that both branch number and
diameters are equally distributed in the space angle 0, i.e. these functions are
assumed as independent on direction ¥ € @. If we denote by ng(r) the total branch
number at distance r related to ®, we can define the arithmetical mean de(r) and
the square mean J@,(r) of the diameters d;(r) [i=1, ..., ng(r)] of the ny(r) branches
as follows:

1 "eln

de(r) = Y di(r), (2)
ne(r) i<

- 1 ng(r) 1/2

d@(r)=[m El d.-(r)z] . (3)

Because of the assumed direction independence, these mean values will be also
related to the unit space angle. We then simply omit the index © and write d(r)
and d(r).
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F1G. 3. System of spherical co-ordinates used in this paper. Co-ordinate surfaces are (1) spheres
r = constant with origin O as centre, (2) half-planes 9, = const., and (3) cones with top in O and opening
angle &, =const. The position of any point P is determined by the parameter values of the three
co-ordinate surfaces intersecting each other in P. For 0=r<+00, 0= ¢,<27, 0<d3,<w a unique
mapping of all space points is realized.

Below we define particular classes of dendritic trees (including the equivalent
cylinder class) by deriving some constraints upon the relation between d and n.

Let us now consider a small volume 7" of the space angle O, i.e. an obtuse cone
bounded by the mantle surface # and the spherical caps B,, %, (see Fig. 5). We
conceptionally can divide 7" into three components: (a) the intracellular space
(cytoplasm) of the dendritic branches contained in ¥, (b) the dendritic membrane
surrounding the cytoplasm and separating it from (c) the extracellular space. We
aim for a description of current flow in the conductive medium represented by the
components (a) and (b). Employing the standard assumptions of linear cable theory
(see Jack et al., 1975; Rall, 1977 for discussion), the physical model situation can
be characterized as follows: the dendritic tree is embedded in a large, isopotential
extracellular space. Hence, orientation effects of the dendritic branches (i.e. angles
between branches) can be neglected, and the axes of all branches are assumed to
be aligned radially. The cytoplasm provides a simple ohmic resistance to current
flow, and for all directions ¥ € ® voltage gradients are supposed as completely
radial. Thus, any angular dependence of current flow as well as of geometrical
neuron parameters can be ignored, so that the angle co-ordinate 9 will be omitted.
The passive membrane properties are represented as a resistance in parallel with a
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FIG. 4. Illustration of the model situation assumed. A single dendritic tree is completely contained
in space angle ©.

capacitance which are both uniformly distributed throughout the dendritic tree.
Table 1 summarizes the notation used in this paper.

3. Derivation of the Model Equations

Let i(r, 1) be the total current (related to the unit space angle) at distance r and
time ¢ in the conductive medium consisting of the dendritic branches, and let V(r, t)
be the corresponding voltage measured relative to the resting potential. A positive
sign for I(r, t) denotes current flow directed centrifugally, i.e. towards increasing
r. As usual, I(r,t) and V(r, t) are assumed to be continuous functions of both
variables r and . According to the physical model described above, current flow is
confined to the space angle O, i.e. there are no intersections of branches with the
boundary # (Fig. 5). Therefore, current can enter or leave 7" only via the boundaries
B,, B,. On the other hand, conservation of current implies that excess current must
flow out through the membrane of the dendritic branches. Thus, the following



NON-UNIFORM EQUIVALENT CABLE MODEL 167

F1G. 5. Volume 7" of space angle © with the components involved. 7" is an obtuse cone bounded by
surface .# and spherical caps 8B,, %,.

currents have to be taken into account: (a) the centripetal current H — I, at %,, (b)
the centrifugal current I, at %,, and (c) the membrane current I, (see Fig. 6).
Applying Kirchhoff’s law, we find
L+ L+1,=0. (4)

The membrane current I,, can be split into resistive and capacitive components I,
I, due to the passive membrane properties assumed. Thus, I, =I5+ I.

F1G. 6. Sketch of portion currents to be considered. Because of the purely ohmic axial resistance
assumed, conservation of current is equivalent to I, + I,+ I,, =0 where membrane current I,, consists
of a resistive and a capacitive component (see text).
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The currents in eqn (4) can be expressed as follows. Firstly,

1,=—j I(r,, t) d®
[C]

12=J I(r,,t)dO
(C)
and so

I1+IZ=J' [I(ry, )= 1I(r,, t)]dO
)

=J JrzmdrdG ()
0Jn ar

according to the definition of the antiderivative of a function.
If we denote by G(r) the membrane conductance of the branches in ¥ (related
to the unit space angle), then Ohm’s law gives for the resistive component I of I,

IG=J I G(r). V(r, 1) dr d® (6)
0Jr

The change of charge Q during a short time interval [¢,, t,] due to the membrane
capacitance C(r) of the branches in 7" (related to the unit space angle) is

Q(1,)-Q(ty) =J Jrl C([V(r, )= V(r,t,)]1drd®
0 Jr

:I IHIBC(>8V“’)dc1d®
0 Jrn N

which via 3Q/dt = I~ implies for the capactive membrane current
oV(r,t
1C==J I c(r) (: L ar do (7)
oJr

Substituting the expressions (5)-(7) in eqn (4), dividing it by |®| . |r, — r,| and passing
to the limit |®| -0, |r,—r,| >0, we obtain the first model equation:

el ey 6oy vinn=o. )

On the other hand, applying Ohm’s law again the voltage drop between the boun-
daries %,, B, can be expressed as

29V(r,t
V(r,,t)—V(rz,t)=—J %—)d

=J.rzR(r) I(r, t)dr
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where R(r) is the axial (cytoplasmic) resistance of the dendritic branches in ¥
(related to the unit space angle). Thus. by differentiating with respect to r the second

M+R(r).I(r, t)=0. 9)
ar
In deriving the eqns (8) and (9) the “macroscopic” parameters R(r), C(r) and
G(r) have been introduced to describe the characteristic bulk properties of the
conductive medium formed by the dendritic tree. In general, ‘““macroscopic” para-
meters of a composite are derived from its “microscopic” characteristics by applying
specific averaging theorems (Babuska, 1976; Sanchez-Palencia, 1980; Bachmat &
Bear, 1986). From the physical model assumed in the present case, the bulk para-
meters will depend in a simple way on the microscopic quantities describing the
dendritic tree (i.e. on its electronic and geometrical-topological parameters).
According to the assumptions formulated above all branches of the tree at distance
r form a population of electrically parallel cables of circular cross-section. The total
cross-sectional area Ag(r) (related to ®) of the dendritic branches at any distance
r then is given by

Ao(r)=m/4.ne(r).d(r)?
[cf. eqn (3)], and the corresponding quantity related to the unit space angle is
A(r)=Ae(r)/|0].

The total resistance to current flow (in the radial direction and related to the unit
space angle) is therefore

R(r)=R;/A(r) (10)

where the axial resistivity R; is assumed to be constant throughout the tree.

On the other hand, the capacitance C(r) and conductance G(r) of the equivalent
conductive medium depend on the total membrane surface area of all branches at
distance r, i.e. in the limit on their summed perimeter (related to the unit space angle)

P(r)="Pe(r)/|0|
where
Po(r)=m.ne(r).d(r)

is the total perimeter related to ® [cf. eqn (2)]. For constant membrane capacity
C,, and constant membrane conductivity G,,,,

C(r)=C,,. P(r), (11)
G(r)=G,,. P(r) (12)

is obtained.
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4. Transformation into Normal Form

Equations (8) and (9) are Kelvin’s well-known RCG cable equations with non-
constant coefficients. Physically, the situation corresponds to a non-uniform cable
where the non-uniformity is due either to the electrical or the geometrical parameters,
or to both. The linear, homogeneous system of partial differential eqns (8) and (9)
is of the parabolic type. It can be written as a single second order equation in the

transmembrane voltage V = V(r, t):
V. 1 s [ 1 a_y] G(r)
ot C(r)orLR(r) or] C(r)’

A non-uniform cable must be characterized by a changing length parameter, which
can be defined as

V=0. (13)

A(r)=[G(r).R(r] . (14)
The space variable r, then, can be transformed into dimensionless distance Z:
" ds
z (r)=I — (15)
o A(s)

which replaces the electrotonic distance X =r/A used in the uniform cable case
with the constant length parameter A. If we further assume that the membrane time
constant

T=C(r)/G(r) (16)
is fixed throughout the non-uniform cable, then eqn (13) yields

avV V. 3V

————v.—+ V=0

aT 922 V'az (17)
T =t/7 denotes dimensionless time, and the function y=y(Z) is defined by the
expression

y=(G'R-GR')/(2GR) (18)

where primes denote differentiation with respect to Z. Only recently, Poznanski
(1988) studied eqn (17) in the case of constant y as an equation representing an
exponentially tapering equivalent cable. In the present case, however, v is subjected
to the restriction of eqn (18) which does not imply that y must be constant (see
below). Introducing the variable W = W(Z, T) through the relation
V(Z,T)=F(Z).W(Z,T) (19)

where
F(Z)=exp[—%'[y(Z)dZ]. (20)
Equation (17) can be rearranged into normal form

oW W
a—T—azz+8. W =0. (21)




NON-UNIFORM EQUIVALENT CABLE MODEL 171

The coefficient 6 = 8§(Z) is defined by
s=v/4+v'/2+1. (22)

From the literature the following assertions on existence and unity of solutions of
eqn (21) can be derived (Babitsch et al., 1967: 160).

Given that 6 = 86(Z) possesses a continuous derivative, then there is a unique
solution of eqn (21) which assumes (and continuously depends on) prescribed
continuous intial and boundary values. These properties obviously transfer them-
selves to the original eqn (13).

The assumption about & clearly holds if y is twice continuously differentiable
[see eqn (22)]. According to the definition of vy, eqn (18), this is equivalent to the
property of the electrical parameters G and R being three times continuously
differentiable functions of Z. This property will hold if it does for the geometrical
functions, A(-) and P(-) [see eqns (10) and (12)]. Therefore, A(-) and P(-) are
assumed in the following to be three times continuously differentiable (with respect
to r or Z), so that the existence and unity of solutions of eqn (21) are guaranteed.

5. Restriction to Constant-Coefficient Case

The determination of explicit solutions of eqn (21)—and so of eqn (13)—
represents a non-trivial problem. Although one could try to solve eqn (21) directly,
e.g. by adopting the classical method of separation of variables, or by applying the
Laplace transform technique, neither appears promising. The difficulty is due to the
non-constant coefficients in eqns (21) or (13), respectively. As Jack et al. (1975)
mentioned, very few exact solutions have been obtained in this case. These authors,
therefore, favoured an approach where combinations of parameters are determined
which reduce the problem to the constant coefficient case.

Applying this strategy also to the present problem, we suppose in the following
that the coefficient § in eqn (21) is a constant.

In this case we have the usual equation of an uniform cable in normalized form
(see Jack et al, 1975; Rall, 1977, for review). Substituting the variable W in eqn
(21) by

W=exp[1-6)T].U (23)
we see that the many specific solutions derived for the uniform cable eqn

aU *U
a—T—E-F U=0 (24)

can be applied to the original, non-uniform cable eqn (13) through the transforma-
tions defined by eqns (15), (16), (19) and (23), provided the changed initial and
boundary conditions are considered.

To put those transformations effectively into practice, the underlying assumptions
must be analysed in more detail. According to eqn (22), 6 = constant means that
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the differential equation
Y+y}2=A (25)

can be solved for the function y(Z) defined in eqn (18) where A is an arbitrary
real constant. Equation (25) is a special Riccati differential equation which is
integrable by the separation of variables, and its solutions can be expressed by
elementary functions.

Depending upon the constant A, different forms of solutions can be derived. We
assume 0 < Z <400 and A =0 (the case A <0 leads to a solution which is incompat-
ible with reality). Denoting by

v(Z)=xy,=xV2A (26)

the particular, stationary solution of eqn (25) in the case A >0, the solution set of
eqn (25) is easily derived as

0 (A=0)
2/(Z-C A=

WZ)= /( ) , .( 0,Z#C) (27)
_7’(1_1+Cexp(—%l)> (A4>0).

Inserting eqn (27) into eqn (19), the voltage V(Z, T) which solves the non-uniform
cable eqn (17) can be calculated through

V(Z, T)=F(Z). W(Z,T) (19)
where F(Z) is specified by
D
F(z)={P/Z=C) (28)

D.exp(—-?.Z)/[1+Cexp(—'ylZ)]

[the lines in eqn (28) correspond to those in eqn (27), and C, D are any constants].
Thus, the solutions of eqn (17) can be expressed now in terms of the solutions
of eqn (24), as follows:

V(Z, T)=exp[(1-8)T]. F(Z).U(Z,T) (29)

where eqns (19), (20) and (23) have been comprised into one.

This relationship shows that the deviations from the uniform cable case described
by eqn (24) are mirrored by certain “correction factors” which take into account
the particular non-uniformity of the cable characterized by eqns (13), (17) and (21).
Depending upon the value of 8 and the course of F(Z), various situations of locally
different amplification or attenuation of the uniform cable solutions are possible.

Two examples are given here. The general steady-state solution of the normal



NON-UNIFORM EQUIVALENT CABLE MODEL 173

(21) can be applied to derive that of the non-uniform cable eqn (17). ForoW/oT =0,
(21) reads

jzzvf—a. w=0, (30a)
the general solution of which is
AZ+A, for6=0
W(Z)={ A,exp(V8Z)+A,exp (—V8Z) fors<0 (30b)

A, sin (V=8Z)+ A, cos (V-8Z) ford<0
(the two arbitrary constants A,, A, must be determined from the boundary conditions
belonging to any specific problem).
Using (30b) in (19), the general steady-state solution of (14) is obtained:
V(Z)=F(Z).W(Z) (30c)
where F(Z) is specified as in (28).
In a similar manner, the basic transient solution of (17) in separable form may
be calculated from that of (24):
V(Z,T)=F(Z).[B,sin(aZ+ B, cos (aZ)].exp[—(6+a>)T]  (30d)

where B,, B, and a depend on the boundary and initial conditions [cf. Rall, 1977
(1.15)].

6. Condition for Reduction to Non-uniform Cable

In the preceding derivations the question of what classes of dendritic trees allow
areduction to a non-uniform cable according to eqn (17) has been left open. Analysis
of the relationship stated between macroscopic parameters on the cable and micro-
scopic quantities of the underlying dendritic tree (see section 3) in the light of the
constant coefficient assumption of section 5 will enable us to formulate a general
branching condition for those trees.

It will be remembered that all branches of a given tree at any distance from the
origin are considered as electrically parallel. Therefore, if eqns (10) and (12) are
transferred to Z-space we obtain

R(Z)=Ri/A(Z), A(Z)=Ae(2)/|0]

where the functions Ag(-), Py(-) are defined in eqns (10) and (12). According to
the definition of y(Z) we have

_G'(Z2).R(Z)-G(Z).R'(Z)
2G(Z)R(Z)
Inserting eqn (31) into eqn (18) we obtain, after some straightforward calculations,

l[f’.(Z) fé(Z)]

(1)

y(Z) (18)

v(2)=3 |-

=22 w2 (32)
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where f,(Z) = Po(Z)/m and f,(Z) = 7/[4A6(Z)]. From eqn (32) it follows that

exp U v(Z) dZ] <[ £i(2)/£(Z)]1"

ne(Z) ne(Z) 1/2
([ ¥ wo ][ ¥ o)
=ne(Z).d(2)"*.d(Z)

where d(2), J(Z) denote the means defined in eqns (2) and (3). Remembering the
definition of F(Z) in eqn (20), we see that

F(Z)xne(Z).d(Z)"*.d(Z) (34)
from which we can derive

D
ne(Z).d(Z)"*.d(Z)={D(Z-C)?
D exp (1, Z)[1+ C exp (-1, Z2)T

where the lines correspond to those in eqns (27) and (28), and C and D are any
constants.

Since for Z =0 the left-hand side of this equation must equal dy/*(d, is the
diameter of the dendritic stem), the constant D can be determined. We yield

a3’
dy?.(z/C-1)

ne(Z).d(2)"?.d(z)=
dy?.exp(y,Z). (

(35)

1+ C exp (--)/,Z))2
1+C '

Eqn (35) represents a branching condition characterizing the classes of dendritic
trees which can be collapsed into a single, non-uniform cable described by eqns
(17) and (21). From eqns (34) and (35) it is obvious that the particular branching
pattern directly determines the factor F(Z) in eqn (29) reflecting the non-uniformity
of the equivalent cable. The implications of condition (35) in r-space can be deduced
when the inverse transformation to

Z(r)=J'rds/)t(s) (15)

is known. Using eqns (10), (12), and (14) we find

Ry, J(r)z]'“
R, "4d(r)

/\(r)=[G(r)R(r)]"/2=[ (36)

3 .R_,_ rg(s)l/z
Z(r)—Z\/Rm J:) a0s) ds. (37)

therefore
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We conclude that the application of eqns (17) or (21) to describe membrane voltage
changes in an unequally branched dendritic tree described by eqn (35) is satisfied
when all terminal branches terminate at the same Z value. The Z value along each
branching pathway from the tree origin 0 to any particular site in the tree is defined
by separate application of eqn (37) to that pathway [note that d(r)=d(r) holds in
this case]. Analogous to the equivalent cylinder model (which is contained in the
present model, see below), this considerably simplifies the mathematical treatment
because the original problem which requires explicit boundary conditions for every
branch point now is reduced to a problem with only two boundary conditions: one
at the origin of the dendritic tree (i.e. the cell body), and the other at the terminations
of the tree all of which must be of the same kind [see Schierwagen (1986) where
explicit boundary conditions are used in a segmental cable model]. A limitation of
the mathematical description derived above is that ng(-) has been assumed to vary
continuously with distance (r or Z). In fact, however, it can only change in discrete
steps (see Jack et al., 1975, for a discussion).

7. Comparison with Other Results

It might be worth noting that eqn (35) provides a generalization of Rall’s ““3/2
power relationship™ (Rall, 1959, 1962). To illustrate this, we remember that the
conditions (i)-(iii) stated above as prerequisites for the equivalent cylinder transfor-
mation (see Introduction) imply that the sum of the 3/2 powers of the diameters
of all branches at any given electrotonic distance from the soma must remain constant
to the terminal points. In Rall’s ideal, symmetrically branching tree (Rall, 1962) all
branches of a given generation have both equal diameters and equal lengths in
r-space, i.e. for y=r=r;,

d’.(r)=dj (i=1,...,n,-)

holds where branching occurs at distances r; (j=1,..., k) with n; branches of
length [, = r; between branch points r; and rj+1. Obviously, in this case arith-
metical and square mean are equal for any generatlon j,d(r)= d(r)= d;. Thus the
length parameter A becomes a constant for generation j,

R, d
A==
R,
The left-hand side of eqn (35) simplifies in this case to n;. d;’*, so that for C =0
n,.d}>=di*exp (7, Z) (38)

follows as a special case.

This equation is identical to that formulated by Rall [1962, eqn (21)] or Jack et
al. [1975, eqn (7.61]. It characterizes a dendritic tree for which the sum of the 3/2
powers of the branch diameters (common to all branches) at any given value of
actual distance r or electrotonic distance Z either is a constant (y, =0) as in the
equivalent cylinder model (Rall, 1959, 1962), or it shows exponential taper (y, <0)
or flare (y, > 0), see Rall (1962), Jack et al. (1975) and Poznanski (1988). Membrane
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voltage changes in such a tree then can be described by eqn (17) with y=1,, i.e.

oV o’V 3V

— -y —=+ V=0 39

oT 32> "oz (39)
This equation also applies to dendritic trees with asymmetrical branching and taper.
According to eqn (35), such a tree must obey the branching condition

ng(Z ny(Z 1/2
(Y @)Y azr)] = ew 2. (40)

8. Summary and Conclusions

The aim of this study was to expand the range of application for analytical models
of electrotonic current flow in branching dendritic trees. Such models have the
advantage over computer models (e.g. compartmental models or branching cable
models, cf. Schierwagen, 1988 for review) of giving immediate insight into how the
various physical parameters describing the dendritic tree affect the solution.

In the past, several authors have tried to broaden both the classes of dendritic
branching patterns and the physical situations which can be treated analytically
(e.g. Butz & Cowan, 1974; Horwitz, 1983; Jack & Redman, 1971; Rall & Rinzel,
1973; Rinzel & Rall, 1974; Walsh & Tuckwell, 1983; Poznanski, 1988). Rall’s
*“equivalent cylinder” model (Rall, 1962, 1977) has been used as prototype as well
as starting point in these analyses.

Following in essentials Rall’s modelling philosophy, we have constructed a new
model for passive membrane electrotonus. Our equations have been obtained from
a combination of core conductor theory with the continuum approach. Interestingly,
the method leads to natural generalization of the cable equation with constant
coefficients, i.e. to such an equation with spatially varying coefficients.

While the non-uniform cable equation can be solved in general only numerically,
we were able to derive a general branching condition under which analytical solutions
can be deduced from those of the uniform cable equation. The method developed
in the present paper for this purpose can be summarized as follows:

4ppIIC4lIon OI £{r) = Jo dS/ A(S) [0 eacn brancning patnway of the tree | 1t must
be proved that the tree belongs to one of the classes defined by branching
condition (35),

3/2

0

dy*(z/Cc-1)?

ne(Z).d(z)V?.d(z)=
(3)/2 exp (le)(

1+ C exp (—y,Z))2
1+C '

2. If so, then passive membrane electrotonus in that tree can be described by the
non-uniform cable eqn (17),

3V 3’V sV

LGN APV SRV
oT 322 oz
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the solutions of which are related to those of the uniform cable eqn (24),

through the ‘““correction factors” of eqn (29),
V(Z, T)=exp[(1-8)T].F(Z).U(Z,T).
3. Depending on the particular branching pattern of the dendritic tree under
study, the “correction factors” exp[(1—68)T]. F(Z) for the uniform cable

solutions U(Z, T) are specified to give the corresponding solutions of the
non-uniform cable eqn (17), i.e.

exp[(1-8)T]U(Z, T) (A=0)
exp[(1-8)T] _
vizn=l_ z-¢c .Uz, T) (A=0,Z#C)

exp[(1-8)T]exp (=v.Z/2)
1-Cexp(-712)

4. Determination of the corresponding solutions of the original non-uniform cable
eqn (13) in the r, --domain requires that the back-transformations Z—>r, T >t
can be carried out. While simply ¢ = T. 7, the space variables are related through

eqn (37),
R~ r J 1/2
zm:zd;{—'{ ;s()s) ds

so that knowledge of the functions d(r), d (r) from anatomical measurements
is necessary.

By comparing our results with those of other models, we found that for an ideal,
symmetrically branching dendritic tree obeying the ““3/2 power relationship” the
present model reduces to Rall’s equivalent cylinder model, or, if exponential taper
of the dendritic trunk parameter is considered, to Poznanski’s tapering equivalent
cable model (see Rall, 1959, 1962; Poznarski, 1988).

Since the general branching conditions derived here allows one to adjust two free
parameters [y, and C, see eqn (35)] a greater variety of branching patterns than
those of the tapering cable class (including the equivalent cylinder class) can be
analytically treated now.

A particular advantage of the present model is the possibility to use in principle
all results derived so far for the equivalent cylinder model and its recent modifications
[e.g. the somatic shunt cable model, see Iansek & Redman, 1973; Durand, 1984;
Kawato, 1984; Poznariski, 1987, or the tapering equivalent cable model of Poznafiski,
1988], provided the dendritic tree under study belongs to one of the model classes.
This will be illustrated in a forthcoming article for several branching patterns and
for various standard situations of cable modelling.

-U(Z, T) (A>0)

I am indebted to Dr J. Franct for fruitful collaboration which gave the impulse for this
work. Thanks are due to Dr J. van Pelt for his critical reading of an earlier draft of this
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paper, and for some very useful suggestions. I am also grateful to a referee for some helpful
comments on this manuscript.
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