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Abstract

Dendritic morphology is the structural correlate for receiving and processing inputs to a neuron.
An interesting question then is what the design principles and the functional consequences of enlarged
or shrinked dendritic trees might be. As yet, only a few studies have examined the effects of neuron
size changes. Two theoretical scaling modes have been analyzed, conservative (isoelectrotonic) scaling
(preserves the passive and active response properties) and isometric scaling (steps up low pass-filtering
of inputs). It has been suggested that both scaling modes were verified in neuroanatomical studies. To
overcome obvious limitations of these studies like small size of analyzed samples and restricted valid-
ity of utilized scaling measures, we considered the scaling problem of neurons on the basis of large
sample data and by employing a more general method of scaling analysis. This method consists in
computing the morphoelectrotonic transform (MET) of neurons. The MET maps the neuron from
anatomical space into electrotonic space using the logarithm of voltage attenuation as the distance
metric. The theory underlying this approach is described and then applied to two samples of morpho-
logically reconstructed pyramidal neurons (cells from neocortex of wildtype and synRas transgenic
mice) using the NEURON simulator. In a previous study, we could verify a striking increase of den-
dritic tree size in synRas pyramidal neurons. Surprisingly, in this study the statistical analysis of the
sample MET dendrograms revealed that the electrotonic architecture of these neurons scaled roughly
in a MET-conserving mode. In conclusion, our results suggest only a minor impact of the Ras protein
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on dendritic electroanatomy, with non-significant changes of most regions of the corresponding
METs.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Most neurons of the mammalian central nervous system exhibit a wide variety of branched den-
dritic trees. The recent advances in recording and staining techniques as well as in computer-as-
sisted methods of acquiring digitized neuronal morphology in 3D have boosted attempts to reveal
dendritic structure—function relationships [1].

According to the current view, dendritic morphology is seen as the structural correlate for
receiving and processing inputs to a neuron. In evolution and development, the size of neurons
with their dendrites has changed. An interesting question then is what the design principles and
the functional consequences of enlarged or shrinked dendritic trees might be [2].

The adoption of transgenic mice mutants has provided a new means to investigate this problem,
among others. Transgenic mice mutations serve for understanding gene function, as well as for
developing therapies for genetic diseases. In these mutants, the gene overexpression may affect
several organs and tissues, including the brain.

In a specific mouse mutant (introduced by [3] and referred to as synRas mice), a permanently
active Ras protein (Vall2-Ha-Ras) in post-mitotic neurons is expressed. In this mutant the expres-
sion of Ras starts post-natally around day 15, when neurons are post-mitotic and the majority of
synaptic contacts has been established. The volume of the neocortex of synRas mice is expanded
up to 25% as compared to wildtype mice. In particular cortical pyramidal neurons express the syn-
Ras construct at high levels resulting in a dramatically enlarged volume of the cortical pyramidal
cells which is mainly caused by increased dendritic diameter and tree degree [4,5]. The number of
neurons, however, remains unchanged [3].

Changes are generally more prominent in layer V than in layers II/III. Topological analyses [6]
revealed significant differences between synRas and wildtype mice regarding any parameters con-
sidered, i.e., number of intersections, branching points (nodes) and tips (leaves), in both basal den-
drites and the apical arbor of layer V neurons but not of layers II/III neurons. In subsequent
studies these findings have been substantiated [7,8].

The significance of such changes in dendritic morphology to a neuron’s capabilities for receiv-
ing and processing inputs could be examined in various ways. Using compartmental models of
reconstructed cortical neurons and model neurons, recent simulation studies have investigated
the role of branching complexity and spatial distribution of dendritic volume in determining
neural integration, synaptic plasticity, and the firing patterns that define neuronal function
[9-11].

In this study, we employed compartmental modeling to simulate the electrotonic properties of
both wildtype and synRas pyramidal neurons. In particular, we used the morphoelectrotonic
transform (MET, cf. [12,23]) to explore the scaling mode realized by the larger dendritic trees
of synRas pyramidal cells.
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2. Materials and methods
2.1. Experimental basis and reconstructions

We used data derived from experiments with three synRas mice aged nine months (see [3] for
the establishment of the synRas mouse line), as well as with three wildtype mice of the same age.
The details of experimental procedures have been described elsewhere [4].

The main deliverables were two sets of retrogradely labelled pyramidal cells (28 cells from wild-
type and 26 cells from transgenic mice) which were reconstructed (Fig. 1) using Neurolucida™
(MicroBrightField, Inc.). The system allowed accurate tracing of the cell processes in all three
dimensions and continuous adjustment of the dendritic diameter with a circular cursor. A motor-
ized stage with position encoders enabled the navigation through the section in the xyz axes and
the accurate acquisition of the spatial coordinates of the measured structure. All visible dendrites
were traced without marking eventual truncation of smaller dendritic sections. This may have led
to certain underestimation of the dendritic tree, especially in synRas mice with a larger dendritic
arbour. To gain both optimal transparency for optimal tracing facilities and at the same time a
possibly complete neuronal reconstruction, sections of 160 um thickness were used. Thicker sec-
tions allowed only ambiguous tracing of thinner dendritic branches. Shrinkage correction (300%)
was carried out in the Z axis, but not in the XY plane, because shrinkage was negligible in these
dimensions (~10%).

2.2. Editing and conversion of morphology files

The morphology files created in this way were processed to allow further analyses. We used for
this purpose the freely available program CVAPP [13], a cell viewing, editing and format convert-
ing program for morphology files (Fig. 1). It can be also used to prepare structures digitized with
Neurolucida™ software for modeling with simulators like Neuron and Genesis.

In particular, CVAPP has been used to convert Neurolucida ASCII files to the SWC format
describing the structure of a neuron in the simplest possible way [14]. In this format, each line

Fig. 1. Light micrograph of retrogradely labelled pyramidal neurons from layers II/III of the synRas mouse neocortex
(left) and a pyramidal cell (right) rendered with CVAPP.
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encodes the properties of a single neuronal compartment. The format of a line in an SWC file is as
folllows: nTxyzRP. In turn, these numbers mean: (1) an integer label (normally increasing by one
from one line to the next) that identifies the compartment, (2) an integer that represents the type
of neuronal segment (0—undefined, 1—soma, 2—axon, 3—dendrite, 4—apical dendrite, etc.); (3—
5) xyz coordinate of compartment, (6) radius of compartment, (7) parent compartment (defined as
—1 for the initial compartment).

2.3. Terminology for dendrites

The dendrites of a neuron are modeled as trees of segments emanating from the soma. A seg-
ment is defined as a portion of dendrite extending between two branching points (intermediate
segments), or between a node (branching point) and a tip (terminal segments). Dendritic segments
are approximated by cylindric sections of length / and diameter d.

The distance from the soma to a point on the dendritic tree measured along the course of the
segments lying inbetween is the path length which is generally greater than the Euclidean distance
between the corresponding points.

Dendritic trees may be categorized by topological type depending on the patterning of seg-
ments, independently of metrical and orientation features [15].

Parameters mostly used are order and degree (Fig. 2). The order (y) represents the topological
distance from the soma. Its value is an integer incremented at every bifurcation (‘centrifugal
order’). A value of y =0 is assigned to the primary segments, i.e., those emerging directly from
the soma. The degree (n) represents the number of tips of a subtree (or partition) stemming from
a segment. In a binary tree, it is related to m, the number of segments of the partition, by
m=2n—1.

The dendritic systems of pyramidal cells are divided into basal and apical parts. Each of the
subdivisions is considered separately (see Section 3).

2.4. Theoretical basis

The potential spread along any of the branches is governed by the one-dimensional cable equa-
tion [16,17]

MV (x,t) 0V (x,1)

Tm ot =4 2 - V(xvt)_Rin'[(x()at)v (1)
A B
terminal “terminal
tip segment
branch —_ intermediate
point segment
root — — root segment

Fig. 2. Topological representation of a dendrite. (A) The tree is depicted by a set of connected segments which are
labeled by (B) the degree of their subtrees and (C) their centrifugal order.
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where V'(x, ?) is the membrane potential at time ¢ and position x, 1,, = R,,,C,, is the membrane time
constant, A = /dR,,/(4R;) is the length constant, and I(x,,?) is the current injected at point x
where the input resistance is R;,. The electrical membrane parameters C,,, R,, and R; are the mem-
brane capacitance, resistance and axial resistivity, respectively.

The electrotonic distance X is defined then as X = x/4, i.e., physical distance x normalized by A.
Therefore, the electrotonic length of a finite cable segment of length /is L =1I/A. A generalized
expression for dimensionless distance between two points a and b is [18] X = f: % which has
been used to derive analytical solutions to cables of varying cross-sectional area or membrane
properties [19,20].

In an infinite cylindric cable the steady-state solution to Eq. (1) is

V(x) = v(0)-exp (~3) @)
with current injection site at x = 0. Obviously, in this case the natural logarithm of the voltage
attenuation V(x)/7(0) gives the electrotonic distance

Vix) x

XZIHV(O):E' (3)

2.5. Compartmental modeling and morphoelectrotonic transform

Compartmental models represent a neuron as an equivalent electrical circuit composed of iso-
potential compartments with each having a resistance and capacitance to ground and are linked
together by ohmic resistances (Fig. 3).

From the mathematical point of view, the parabolic partial differential Eq. (1) is approximated
by a set of ordinary differential equations which must be solved numerically [21].

Simulations with the compartment models were done with the NEURON simulator [22] on a
PC under Windows XP. Membrane properties were uniform throughout the model cells. We used

[

=t Ii]»v, -Lcm Iﬁffm ==c, [:]R,
Ly -':'.T y —  —

R, R, R, R,

Fig. 3. Scheme of a membrane cylinder and its equivalent electrical circuit. For details, see text.
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typzical estimates of the biophysical properties: R; = 150 Q cm, R, = 70 kQ cm?, and C,, = 1 puF/
cm”.

The simulations were used to compute the morphoelectrotonic transform (MET) of each neu-
ron. The MET maps the neuron from anatomical space into electrotonic space, using the loga-
rithm of voltage attenuation as the distance metric. This transformation was described by
several authors [12,23]. In the following, the approach of these authors is outlined.

The key to this transformation is the new definition of electrotonic distance L; between two
locations 7, j on a neuron as given in (3), i.e., through the natural logarithm of the voltage (or cur-
rent) attenuation. If voltage V; is applied at point i, the response V; at point j is obtained, and the
voltage attenuation from i to j is

Vi
J

Vice versa, voltage V; applied at point j leads to the response V; at point 7, and the voltage atten-
uation from j to i is

V.

It was shown [24-26] that in general the two attenuations are not equal to each other, 4; # A,
1.e., signal attenuation between any two points in a real cell is direction-dependent.
Electrotonic distance from site i to j is defined as

In the case of an infinite cylinder, L;; equals the classical measure X defined in (3) where voltage
decays e-fold per unit of distance for both metrics. As we see from (6), L;; preserves this property
of e-fold decay for networks of finite cables such as dendritic trees. This is not true for the classical
measure X (see [12,23]).

If stimulus and recording location are interchanged, the electrotonic distance is L; =InAj,.
Therefore, the path in anatomical space between any two points on the neuron has two mappings
in electrotonic space, depending on direction of signal spread.

From the definition (6) of electrotonic distance the additivity property of this measure follows,
as we easily see from the following. If point & lies somewhere on the direct path between points i
and j, then A;; = Ay - Ay, and (6) yields L = Ly + Ly;.

The properties of the log-attenuation measure allow a clear and instructive visual representa-
tion of electrotonic architecture. Generating the morphoelectrotonic transform (MET) of a neu-
ron from its morphological and electrical properties requires a two-step procedure. First, the
log-attenuations for a set of points relative to some reference site (e.g., the soma) are calculated.
This is done for several frequencies, because both steady-state and dynamic signals are consid-
ered. Since attenuation is direction-dependent, a pair of transforms must be computed for each
dendritic segment. Usually the soma is taken as one fixed reference point, and somatopetal (V)
and somatofugal (V,,) mappings are computed. Second, graphical representations are con-
structed—METs—in which the anatomical length of each of the segments comprising the den-
dritic tree is replaced by its corresponding L; Diameter and orientation of the segment are
preserved.



358 A. Schierwagen et al. | Mathematical Biosciences 207 (2007) 352-364

The neural simulation environment NEURON [22] includes electrotonic analysis tools enabling
the MET calculation in a convenient way. We calculated METs at two different frequencies (0 and
50 Hz) and for somatopetal and somatofugal inputs, i.e., four METs per neuron.

2.6. Data analysis and statistics compiled

In this paper, we performed scaling measurements on dendrogram representations [27] of neu-
rons in metric MET space where the distance metric is defined through the log-attenuation of
membrane potential (see Section 2.5). In a dendrogram representation, dendritic segments are
straightened out and oriented parallel to the primary axis of the stem segment. Distances mea-
sured along this axis correspond to path lengths on the dendrite (Fig. 4).

The scaling properties of pyramidal neuron dendrites were analyzed by using exclusively the
MET dendrogram data. In electrotonic transform space, we performed two different measures
of dendritic complexity. First, a variant of Sholl analysis [6] was performed, i.e., dendrograms
were quantified. Probe lines are laid across the dendrogram at regular intervals and the number
of dendritic intersections with each line is plotted as a function of dendritic path length from the
soma.

We also performed an order analysis of electrotonic lengths, i.e., the number of segments was
calculated as a function of segment order and the median of MET lengths at a given segment
order was calculated.

Since the Kolmogorov—Smirnov test for normal distribution failed in general, we used the
Mann-Whitney U test for independent groups. A series of between-class comparisons (wildtype
vs. transgenic) was carried out for each measure of electrotonic extent, testing the null hypothesis
that the two sample data stem from the same population, i.e., that the Ras protein has no effect on
electrotonic architecture.

The significance level was set at P < 0.05 and computations were performed using the SPSS 12.0
statistical package. The photomicrograph (Fig. 1) was taken with a digital microscope camera
AxioCam HRc running on AxioVision 3.1 software (both from Carl Zeiss Vision).

Fig. 4. A transgenic neuron (SE 19) as displayed in anatomical space (left) and dendrogram space (right).
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3. Results

The morphology and electrotonic architecture of a representative neocortical pyramidal neuron
from synRas mouse is shown in Fig. 5. On the left of this figure, the 2D projection of the anatomy
of the cell is displayed. The center and right images are the renderings of the V;, and V,, mor-
phoelectrotonic transforms relative to the soma at frequencies of 0 and 50 Hz. The calibration
bars are in ‘log attenuation’ units (one unit of separation in electrotonic space corresponds to
an e-fold decay of voltage). Because the soma is the reference point for the transforms shown
in this and the following figure, electrotonic distance is to be measured away from the soma in
the V,, image, and toward it in the V;, image.

It should be noticed that neurons are electrotonically more compact for somatofugal signal
propagation (V) than for somatopetal propagation (V;,) which means that there is only slight
attenuation of voltage spread away from soma. The proximal segments account for most of the
voltage attenuation for somatofugal propagation, but the terminal branches are where most of the
signal loss occurs during somatopetal propagation.

The basilar dendritic field is electrotonically more compact than the apical field for V,, but for
Vin these fields are nearly equally extensive (see also Fig. 6).

Vout transforms at 0 Hz of both neuron classes are relatively compact while they grew at 50 Hz,
indicating in both cases moderate voltage attenuation away from soma. The V, transforms were a
multiple larger (note different scales in the ¥, and V,,; plots).

Sholl analyses of the wildtype and synRas samples yielded a differentiated picture for apical and
basal dendrites depending on input frequency and direction of signal spread (Fig. 6). Apical den-
drites of both samples showed no differences in their Sholl plots, neither for the two input frequen-
cies used (0 and 50 Hz) nor for the V;, and V,, transforms (Fig. 6). Generally, the spatial extent
of the dendritic trees in both Vj, and V,, transforms increased roughly threefold from 0 to 50 Hz
input frequency. For the two samples, the extent of the apical tree V,,, transforms exceeds that of
the basal dendrites by almost two while the Vj, transforms nearly agree in extent.

In the V;, transform at DC input, the number of dendritic intersections with the probe lines
reaches a maximum very near to soma, at distance (path length) L = 0.1, while at 50 Hz the max-
imum is shifted to distance L =1.2.

Anatomy Vin Vout

50 Hz

Fig. 5. Mapping from anatomic to electrotonic space. Left: 2D projection (scale bar: 150 pm) of the anatomy of a
transgenic neuron (SE 19). Middle and right: renderings of each METs computed at 0 Hz (top) and 50 Hz (center) for
somatopetal (V;,—scale bar: L = 1) and somatofugal (V,,—scale bar: L = 1) signal propagation.
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Fig. 6. Sholl analyses of MET dendrograms. Displayed is the frequency of dendritic intersections as a function of
transformed path lengths from the soma in the V;, (upper part) and V,, (lower part) transform. Apical dendrites (left
column) and basal dendrites (right column each) were analyzed for input frequencies of 0 Hz (upper row each) and
50 Hz (lower row each). Note the different scales of the distance variable for the two input frequencies in the Vj, and
Voue analyses, respectively. Asterisks (*) denote significant differences (P < 0.05) between the two groups. Abbrevi-
ations: wt, wildtype neurons; se, synRas neurons.
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The V,, transforms at DC input have maximal number of dendritic intersections at distances
in the region L = 0.003-0.006 and at 50 Hz the maximum lies at distance L = 0.02.

In the V;, transform at 50 Hz of basal dendrites, the number of dendritic intersections differs
significantly at several distances (L = 0.6, 0.9, 1.2 and 3.0). In addition, at DC input differences
appeared at L = 0.1 and 0.6. In the V,,, transforms at 50 Hz only the numbers of dendritic inter-
sections at L = 0.04 differ significantly. Note the different shapes of the Sholl plots for the Vj, but
not the V,, transforms at input frequencies of 0 and 50 Hz.

The order analysis of electrotonic lengths was performed following a centrifugal ordering
scheme (Fig. 7). The number of dendritic segments per order was calculated (not shown) and
MET lengths were displayed as sample medians per segment order. Interestingly, the results yield-
ed a distinct picture if compared with the Sholl analyses of the METs. V, transforms (but not V;,
transforms) of apical dendrites showed clear differences at frequency 50 Hz for orders 2, 5 and 9
(the latter also at DC). In contrast, basal dendrites appeared unchanged (except V;, at 50 Hz, or-
der 6). An additional order appears in the synRas neurons (order 8).

It appears as if in the V;, transform of basal dendrites at 50 Hz the significant increases in seg-
ment numbers at some distances (L = 0.6, 0.9, 1.2 and 3.0) are confined to order 6. On the other
hand, the differences in the V,, transforms of apical dendrites at frequency 50 Hz for some orders
(2, 5 and 9) had no counterpart in differences of Sholl diagrams.
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Fig. 7. Order analysis. MET segment lengths are displayed as sample medians depending on segment order. Significant
differences (P < 0.05) between the two groups are denoted by *.
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Together the Sholl and order analyses demonstrate that both basal and apical dendrites in synRas
neurons underwent only a few localized changes in their MET properties at 50 Hz but not at DC.

4. Discussion

The traditional way to explore onto- and phylogenetic changes at various levels of brain orga-
nization has been by means of comparative anatomical analyses on normal and pathological
brains. As yet, only a few studies have examined the effects of neuron size changes on function.
Two theoretical scaling modes have previously been analyzed, conservative (isoelectrotonic) scal-
ing, and isometric scaling [28]. They are only two among many tree patterns in which the diam-
eters of dendritic segments change according to a functional relationship to their increase in
length. From cable-theoretic analyses, it is known that conservative scaling preserves the passive
and active response properties, and isometric scaling steps up low pass-filtering of inputs. It has
been suggested that both scaling modes were verified in neuroanatomical studies (see [29] and the
references therein). These studies have often been based, however, either on a few examples (small
sample size), or on rough measures like maximal extent in anatomical and/or electrotonic space,
but not on detailed analyses of dendritic architecture including complexity measures. Therefore,
the conclusions should be considered with caution.

Thus, there has been a need to consider the scaling problem of neurons on the basis of large
sample data. This study presented one of the rare quantitative analyses of large samples of neu-
rons with respect to their electrotonic architecture (see [30] for another example). We used 3D
data on neuronal morphology to quantitatively characterize the scaling properties of synRas neo-
cortical neurons. Two sets of neurons, i.e., pyramidal cells from wildtype and synRas transgenic
mice, have been analyzed.

In a previous study, a striking increase of dendritic tree size was verified in the pyramidal neu-
rons of synRas mice neocortex [4]. Surface area and volume of proximal and intermediate dendrit-
ic segments were significantly augmented which was caused mainly by increased dendritic
diameter, and not by segment elongation. No significant changes were seen in the number of den-
dritic segments; in some cases, however, additional orders were observed. Dendritic complexity as
quantified by Sholl analyses of basal and apical dendrites was unaltered, too.

Given these different results from our morphometric analyses, differences between the morpho-
electrotonic transforms of wildtype and transgenic neurons could be supposed. From cable and
two-port theory the conclusion can be drawn, however, that the degree to which neuronal mor-
phology is distorted by the MET is determined by a complicated interplay of segment diameter
and boundary effects (see [12,23]). Predictions based solely on morphological measurements of
how the METs of wildtype and transgenic neocortical pyramidal neurons may differ are therefore
not possible.

Thus, the statistical analysis of the sample MET dendrograms computed with NEURON re-
vealed features of their electroanatomy previously unknown. The results indicated a MET-con-
serving scaling mode. This means, the electrotonic architecture of these neurons scaled roughly
in a way preserving both centrifugal and centripetal METs for the input frequencies applied.
Dimensions of dendritic segments changed in such a way that direction- and frequency-dependent
signal propagation in the passive neuron models was generally not affected.
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In conclusion, our results suggest only a minor impact of the Ras protein on dendritic electro-
anatomy, with non-significant changes of most regions of the corresponding neuromorphic trans-
forms. It remains an important problem for future research to examine how active membrane
currents in the dendrites might influence the scaling properties of these neurons.
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