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Abstract. Theories of how the brain computes can be differentiated in
three general conceptions: the algorithmic approach, the neural infor-
mation processing (neurocomputational) approach and the dynamical
systems approach. The discussion of key features of brain organization
(i.e. structure with function) demonstrates the self-organizing character
of brain processes at the various spatio-temporal scales. It is argued that
the features associated with the brain are in support of its description in
terms of dynamical systems theory, and of a concept of computation to
be developed further within this framework.

1 Introduction

The brain as the basis of cognitive functions such as a thinking, perception and
acting has been fascinating scientists for a long time, and to understand its
operational principles is one of the largest challenges to modern science.

Only recently, the functional architecture of the brain has gained attention
from scientific camps which are traditionally rather distant from neuroscience,
i.e. from computer and organization sciences. The reason is that information
technology sees an explosion of complexity, forming the basis for both great
expectations and worries while the latter come up since software technology is
facing a complexity bottleneck [1]. Thus various initiatives started to propa-
gate novel paradigms of Unconventional Computing such as IBM’s ‘Autonomic
Computing’ 1, the ‘Grand Challenges in Computing Research’ in the UK 2, and
DFG’s ‘Organic Computing’ (DFG = German Science Foundation) 3.

According to current views, the brain is both a computing and organic en-
tity. The research initiatives mentioned before see therefore the neurosciences as
sources of concepts relevant for the new, unconventional computing paradigms
envisioned. Hence, the formal concepts which were developed within the The-
oretical Neuroscience to describe and understand the brain as an information
processing system are of special relevance.

This paper is organized as follows. Section 2 reviews some key features of
brain organization (i.e. structure with function). It is followed by Section 3
1 http://www.research.ibm.com/autonomic
2 http://www.ukcrc.org.uk/grand challenges
3 http://www.organic-computing.org
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Fig. 1. Levels of brain organization and methods for its investigation. This figure relates
the resolution in space and time of various methods for the study of brain function
(right) to the scale at which neuronal structures can be identified (left). Adapted
from [4]. MEG=magnetoencephalography; EP=evoked potentials; fMRT=functional
magnetic resonance tomography; PET=positron emission tomography.

which discusses the different computational approaches developed in Theoretical
(Computational) Neuroscience. Questions raised there include the search for the
computational unit, the concept of modularity and the development of dynami-
cal systems approaches. We end in Section 4 with some conclusions concerning
the needs of a theory of analog, emergent computation.

2 Brain Organization and Methods for Investigation

Neuroscientific research is practiced at very different levels extending from mole-
cular biology of the cell up to the behavior of the organism. In the first line, natu-
rally, the neuroscientific disciplines (Neuroanatomy, -physiology, -chemistry and
-genetics) are involved, but also Psychology and Cognitive Science. Theoretical
Neurobiology (with its subdivisions Computational Neuroscience and Neurocom-
puting), Physics and Mathematics provide theoretical contributions (e.g. [2,3]).
The integration of the results gathered by the disciplines is expected to provide
insights in the mechanisms on which the functions of neurons and neural net-
works are based, and in the long run in those of cognition. The well-grounded
and efficient realization of this integration represents one of the greatest chal-
lenges of actual neurosciences. New techniques like patch clamp, multi-electrode
recording, electroencephalogram (EEG) and imaging methods such as mag-
netoenzephalography (MEG), positron emission tomography (PET) and func-
tional magnetic resonance tomography (fMRT, nuclear spin tomography) enable
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investigations on different system levels (Fig. 1), raising again the question of
how to integrate conceptionally the results.

The human brain has on the average a mass of 1.4 kg. According to different
estimations it contains 1011 − 1012 neurons which differ from other cells of the
organism by the pronounced variability of their shapes and sizes (Fig. 2). The in-
dividual morphologic characteristics of the neurons are important determinants
of neuronal function [5,6,7,8,9], and thus they affect the dynamic characteristics
of the neural network, to which they belong, either directly, or by specifying the
entire connectivity between the neurons. In neural systems the influences are mu-
tual, so that in general also the global network dynamics affect the connectivity
and the form of the individual constituent neurons [5,10].

Fig. 2. Examples of dendritic neurons. Dendrites exhibit typical shapes which are
used for classification of neurons. A. Purkinje cell from guinea pig cerebellum, B. a-
motoneuron from cat spinal chord, C. spiny neuron from rat neostriatum, D. Output
neuron from cat superior colliculus. Figures A.-C. from [11], D. from [12].

The specific functions of the brain are essentially based on the interactions
each of a large number of neurons by means of their synaptic connections. A
mammalian neuron supports between 104 and 105 synapses whose majority is
located on the dendrites. Estimations of the total number of synaptic connec-
tions in the human brain amount to 1015. Depending on the effect upon the
successor neurons connections are classified as excitatory and inhibitory. The
neurons of the cortex are usually assigned to two main categories: the pyramidal
cells with a portion of ca. 85%, and the stellate cells with ca. 15% [13]. Pyrami-
dal neurons often have long-range axons with excitatory synapses, and stellate
cells with an only locally branched axon often act in an inhibitory manner. The
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activation status of the pyramidal neurons possibly encodes the relevant infor-
mation, while the stellate cells raise the difference between center and surround
by their inhibitory influence on the local environment, i.e. by lateral inhibition.

On the basis of distribution, density and size of the neuron somata the cortex
can be divided in six layers (e.g. [14]). The cell bodies of the pyramidal cells
particularly are in the layers III–V, and their apical dendrites extend into the
upper layer I. The somata of the stellate cells are mainly in the middle layers III–
IV (see (Fig. 3). Efferent connections from the cortex to subcortical and other
structures are formed by the axons of the pyramidal cells in layer V; afferences
to the cortex mainly come from the thalamus.

Hubel and Wiesel’s landmark studies [15,16] of the visual system have led
to the assumption that information processing in the brain generally follows a
hierarchical principle. Important for the conceptional view on the function of
the brain is, however, that there is also a multitude of feedback connections or
‘back projections’, which e.g. in the geniculate body (CGL) by far outnumber
the forward connections. Nearly all brain regions influence themselves by the
existence of such closed signal loops [17]. This also applies to the function of
the individual neurons, which are involved in signal processing within an area
or a subsystem of the brain. Further operational principles are divergence and
convergence of the connections, i.e. a neuron and/or an area sends its signals
to many others, and it also receives signals from many other neurons and/or
areas. On the average, any two neurons in the cortex are connected by only
one other neuron (‘two degrees of separation’, cf. [18]). This structurally caused
functional proximity means in the language of information processing that the
brain is characterized through massive parallelism.

3 Computational Approaches

Theories of how the brain functions as an informational system are in different
ways related to the levels of brain organization. We can differentiate three gen-
eral conceptions : the algorithmic approach, the neural information processing
(neurocomputational) approach and the dynamical approach [19].

The algorithmic computation approach attempts to use the formal definition
of computation, originally proposed by Turing [20] in order to understand neural
computation. Although brains can be understood in some formal sense as Turing
machines, it is now generally accepted that this reveals nothing at all of how the
brain actually works [19]. Thus, Turing’s definition of computation cannot be
straightly applied (e.g. [21]).

The neurocomputational approach was launched in 1988 by Sejnowski, Koch
and Churchland [4]. By stressing the architecture of the brain itself Computa-
tional Neuroscience was defined by the explicit research aim of “explaining how
electrical and chemical signals are used in the brain to represent and process in-
formation”. In this approach, computation is understood as any form of process
in neuronal systems where information is transformed [22]. The ‘acid test’ for
this approach (not passed as yet) is to find a definition for transformation of
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Fig. 3. Scheme of a neuronal circuit in the cerebral cortex. Pyramidal neurons (P —
black triangles) receive inputs (either directly via afferent fibers, or from local neurons),
generate outputs, and interact with one another. Local neurons (black circles — various
types of stellate cells) may be excitatory (E — empty synapse symbols) or inhibitory (I
— black synapse symbols). Cortex layers are indicated on the left. Significant variations
in cell density, dendritic architecture, and synaptic arrangement enable a vast number
of computational possibilities.

information, such that not almost all natural systems count as computational
information processors [23,24].

The dynamical approach rests on concepts and theories from the sciences
(Mathematics, Physics, Chemistry and Biology), and particularly from (Non-
linear) Dynamical Systems Theory. It seeks to understand the brain in terms
of analog, rate-dependent processes and physics style models. The brain is con-
sidered as a large and complex continuous-time (often also continuous-space)
physical system that is described in terms of the dynamics of neural excitation
and inhibition.

3.1 Neurocomputational Concepts

While current neurocomputational concepts are of great diversity, most of them
are tightly linked to the algorithmic view. The algorithmic as well as the neu-
rocomputational approach attempt to explain properties of the nervous sys-
tem (e.g., object recognition) in terms of parts of the system (cardinal cells,
or ‘grandmother neurons’), in accordance with the decomposition principle of
(linear) Systems Theory. Models of this kind seek to understand on a detailed
level how synapses, single neurons, neural circuits and large populations process
information. If the information processing capacity of the brain is compared in
this way with that of an algorithmic computer, one is confronted with several
problems. In the first line, the units of computation are to be determined. The
identification of the computational elements, however, is highly controversial.
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As is generally known, McCulloch and Pitts in their now classical work [25] de-
fined the neuron as the basic computational unit, since they believed it were the
simplest nonlinear element.

Yet today it is obvious that (nonlinear) neuronal computation happens already
at subcellular scales (dendritic subunits, synaptic sites), possibly even in supra-
molecular structures in dendrites. [26,27,28]. Correspondingly, e.g. synapses as
computational units were analyzed in theoretical studies (e.g. [29]). But the
problem of the computational unit at these scales remains open [30].

Computational units are assigned to supracellular scales, too. Based on ideas
intimately related to the decomposability principle underlying the algorithmic
approach, the principle of the modular organization of the brain has been formu-
lated. According to this principle, the nervous system is composed of ‘building
blocks’ of repetitive structures. The idea became known as the hypothesis of the
columnar organization of the cerebral cortex; it was developed mainly after the
works of Mountcastle, Hubel and Wiesel, and Szenthágothai (for reviews, see
e.g. [31,32,33]).

Referring to and based on these works, the spectacular Blue Brain Project was
started very recently. According to self-advertisement, the “Blue Brain project
is the first comprehensive attempt to reverse-engineer the mammalian brain, in
order to understand brain function and dysfunction through detailed simula-
tions” [34]. The central role in this project play ‘cortical microcircuits’ which
have been suggested as modules computing basic functions. Indeed, impressive
progress has been made in developing computational models for defined ‘canon-
ical’ microcircuits, especially in the case of online computing on time-varying
input streams (see [35] and references therein).

It should be noted, however, that the concept of columnar organization has
been questioned by neurobiological experts. Reviewing new findings in different
species and cortical areas, it was concluded that the notion of a basic uniformity
in the neocortex, with respect to the density and types of neurons per column
is not valid for all species [36]. Other experts even more clearly state that it has
been impossible to find a canonical microcircuit corresponding to the cortical
column [37]. These authors reason that although the column is an attractive
idea both from neurobiological and computational point of view, it has failed as
an unifying principle for understanding cortical function.

3.2 Concepts from Dynamical Systems Theory

Inconsistencies between neurobiological facts and theoretical concepts are not
new in the history of Theoretical Neurobiology. In the case of the column con-
cept they demonstrate that the decomposition principle is possibly not suitable
to serve as exclusive guidance principle for the study of information processing
in the brain. While the principle of decomposability has a great number of ad-
vantages, for example just modularity, many problems in neuroscience seem not
decomposable this way. The reason is that brains (like all biological systems) are
inherently complex.
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An appropriate framework for the description of the behavior of complex
systems is represented by the attractor concept of nonlinear dynamical systems
theory. Attractors may be informally defined as states of activity toward which a
system settles (relaxes) over time. The activity in a neural system is described by
a trajectory in the high-dimensional state space, say RN where N is the number
of neurons. Since this state (or phase) space is continuous, the neural system
performs an analog computation [38]. In this framework, a certain parameter
setting (the initial condition) is interpreted as input, the attractor to which
the system’s state flows as the output, and the flow itself as the process of
computation. The criteria of computational complexity developed for digital
algorithms are not directly applicable to ‘analog algorithms’. Appropriate criteria
of ‘dynamic complexity’ have been suggested: the time of convergence to an
attractor within defined error bounds, the degree of stability of the attractor, the
pattern of convergence (asymptotic, or oscillatory), type of the attractor (static,
periodic, chaotic, stochastic), etc. Important building blocks for a non-standard
theory of computation in continuous space and time have been developed by
Siegelmann [39] by relating the dynamical complexity of neural networks with
usual computational complexity.

While standard artificial neural networks have only point attractors, dynam-
ical systems theory easily handles also cases where the output is a limit cycle or
a chaotic attractor. The respective systems, however, have not been considered
in computational terms as yet. This holds also for the so-called active, excitable
or reaction-diffusion media, of which continuous neural fields are instances (see
[40]). These media — spatially extended continua — exhibit a variety of spatio-
temporal phenomena. Circular waves, spiral waves, and localized mobile exci-
tations (‘bumps’) are the most familiar examples. The challenge is to find out
how these phenomena can be used to perform useful computations. Generally,
data and results are given by spatial defects and information processing is im-
plemented via spreading and interaction of phase or diffusive waves. In several
studies it was shown that these media have real capabilities to solve problems
of Computational and Cognitive Neuroscience (formation of working memory,
preparation and control of saccadic eye movements, emergence of hallucinations
under the influence of drugs or the like, ‘near-to-death’ experiences, for overview
see e.g. [41,42] and the references therein) and Artificial Intelligence (navigation
of autonomous agents, image processing and recognition, e.g. [43,44]).

4 Conclusions

During the last decade, useful insights on structural, functional and computa-
tional aspects of brain networks have been obtained employing network theory
[45,46]. From the many investigations in this area (see e.g. [47] for review) we
know that the complexity of neural networks is due not only to their size (number
of neurons) but also to the interaction of its connection topology and dynamics
(the activity of the individual neurons), which gives rise to global states and
emergent behaviors.
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Several attempts were made to substantiate the general idea of computational
systems which acquire emergent capabilities during a process of self-organization.
The holistic properties of self-organizing systems represent a central intricacy in
this respect. There is no ‘natural’ way to decompose such a system. If a decompo-
sition is made anyhow (e.g. based on anatomical information only), subsystems
should at first have a certain behavioral potential (i.e. multi-functionality). Ideas
of the unfolding of multi-functionality were subsumed by Shimizu [48] under the
term relational system. Relational systems obtain their functional properties
only during mutual interaction with the other elements of the system while on
its part the interactions of the elements depend on the evolving properties of
the elements. Thus, an iterative process takes place which is based on princi-
ples of self-reference and self-organization. The properties of the system as a
whole emerge in such a way that it is able to cope with perturbations from the
environment.

An attempt to formalize this concept was undertaken recently [49] using
‘chaotic neuromodules’. The results obtained from applications to evolutionary
robotics demonstrate the multi-functional properties of coupled chaotic neuro-
modules but also the limitations of the linear couplings used [50].

A general conclusion to be drawn is that a great deal of progress in Theo-
retical Neuroscience will depend on tools and concepts made available through
the dynamical systems approach to computing. Steps to overcome the existing
theoretical restrictions in this area are essential not only for solving the problems
in the Neurosciences but also to reach the goals of Unconventional Computing.
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