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Abstract

The paper describes the application of cellular�automaton�like simu�
lations to dynamic neural �elds	 Dynamic neural �elds show a complex
dynamic behaviour which has been investigated successfully by analytical
methods so far only for the one�dimensional case	 We concentrate our
interests mainly to simulations of two spatial dimensions and their di
er�
ent dynamic patterns	 In two examples we apply dynamic neural �elds to
problems in computational neuroscience	

� Introduction

In modelling neuronal spatially distributed phenomena one can generally
choose two di
erent ways �cf� ����� One way is to setup a network of dis�
crete model neurons and all their interconnection weights� which is usually
done in the so�called PDP approach ����� ���	 The main interest lies on the
learning capabilities of the established network� i	 e	 on the correct adapta�
tions of the connection weights	 Another approach to neuronal modelling
is using continuous networks �so�called �elds�	 The number of neurons is
unlimited in these models� and the connections between the neurons are
handled in a general way �e	 g	 statistically� without having individually
changing weights	 Therefore� instead of being interested in the learning
mechanisms of the network one investigates the dynamics of activity of the
�elds	 It is a convenient way to describe the evolution equations of the
�eld by integro�di
erential equations �IDEs�	

One important class of continuous networks are dynamic neural �elds
�DNFs�	 DNFs were �rst introduced by Amari ��	 Similar formulations
are made in �� and ���	 This paper is motivated by two e
orts	 Firstly� we
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want to describe a method for simulations of two�dimensional DNFs and
secondly� we show their use to two di
erent problems in computational
neuroscience	

Amari �� investigated a model of DNFs as a set of IDEs and could
found solutions for the one�dimensional spatial case	 However� most spatio�
temporal computations of mammalian brains involve more than one spatial
dimension	 Therefore we present a method to simulate two�dimensional
DNFs which is based on cellular automata �CA� simulations used for reac�
tion�di
usion systems	 The simulations o
er a powerful way to investigate
qualitatively the dynamics of the spatio�temporal patterns described by the
IDEs	 Further they can be used in applications of modelling biologically
motivated space�time computations	

In the next section we look shortly at the results of the work of Amari	
Then we give details of our own simulations for two�dimensional DNFs	
In Section � we discuss the usefulness of our method	 We show on two
examples in Section � the application of the approach to problems in com�
putational neuroscience	 The following last section concludes the paper	

� Dynamic neural �elds

Usually one regards DNFs as spatially distributed populations of model
neurons which are connected in a random manner �cf� Amari ���	 Being
more precisely one can distinguish di
erent layers of neurons of the same
type	 The average intensity connection function is of the lateral inhibition
type	

Let us considerm two�dimensional neuronal layers fully connected	 The
average membrane potential of the neurons in the ith layer at position
x � �x�� x�� and time t is ui�x� t�	 The general �eld equations ��� incor�
porate a sigmoid activation function fi� a �usually negative� value hi as a
resting potential� an external stimulation function si�x� t�� and a connec�
tion function wij�x� which gives the strenght of the in�uence of neurons
from layer j to the i�th layer at place x�

�i
�ui�x� t�

�t
� �ui �

mX
j��

Z
�

��

wij�x� x��fj �uj�x
�� dx�� hi � si�x� t�� ���

From a mathematical point of view it is clear that one cannot analyse
this system of equations for general functions of f �w� and s	 In a �rst step
Amari made the following simpli�cations� The sigmoid functions fi are
simpli�ed to a step function�

f �u �

�
�� if u � �
�� if u � ��

���

which means� that the �eld at a certain place is only for u � � in the
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excited state�	
The connection function w is supposed to be symmetrical and homo�

geneous� i	 e	 w�x� � w��x�	 The stimulation function s is kept constant	
Although these constraints simplify the investigations it is however still
an di�cult task to analyse the system due to the great complexity of ���
and di
erent initial values of the �elds ui	 The simplest case is an one�
dimensional �eld consisting of one layer	

��� DNF of one spatial dimension

For the case of one neural layer�

�
�u�x� t�

�t
� �u �

Z
w�x� x��f �u�x�� dx�� h � s�x� t�� ���

Amari proved the existence of �ve types of pattern dynamics�
� monostable �eld in which all excitations will die out
� monostable �eld which is entirely excited
� �explosive type� bistable �eld in which localised excitations up to a cer�
tain range spread without limit over the entire �eld� but vanish if the range
is to narrow
� bistable �eld in which initial excitations either become localised excita�
tions of a de�nite length or die out� localised excitations move in direction
to the maximum of the input s
� �elds shows spatially periodic excitation patterns depending on the av�
erage stimulation level	

The type of dynamics of a �eld depends mainly on the connection func�
tion w	 For a mexican hat type connection function� also known as di
er�
ence of two gaussians �Fig	 ��� one assumes that excitatory connections
dominate for proximate neurons� and inhibitory connections dominate at
greater distances	 This type is also known as a lateral inhibition type	 In
particularly� the positive range of w�x� along the x�axis determines the
length of excited ranges of u�x�	

The complexity of dynamics increases if one adds a second layer to the
�eld u	 Apart from the types mentioned for the case of one layer one can
further detect oscillatory patterns and traveling waves	 Amari simpli�ed
��� in order to cope with the analysis of both �elds in the following way�
one layer� say u�� is a layer consisting of only excitatory neurons� and the
other layer� say u�� consists only of inhibitory neurons	 Moreover� one
can restrict the connections so that the inhibitory neurons only inhibit
the excitatory neurons and the excitatory neurons have very narrow fan�
out connections to the inhibitory neurons	 The latter can mean that the
excitatory neurons at place x excite the inhibitory neurons at place x only	

�In ����� Amari showed that the following results hold also for smooth sigmoid functions�
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Figure �� The two�dimensional connection

function w	x
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Thus� the �eld equations turn out to be�

��
�u��x� t�

�t
� �u��x� �

Z
w��x� x��f �u��x

�� t� dx�

�

Z
w��x� x��f �u��x

�� t� dx�� h� � s��x� t�

��
�u��x� t�

�t
� �u��x� � w�f �u��x� t� � h� � s��x� t�� ���

Note� that in Equations ��� the functions w� and w� are now of the gaussian
type and w� is a constant	

A travelling wave across the �eld can be established as follows� Suppose
a localised excitation in u� at position x and an localised excitation in u�
at position x��	 The value of � depends on the signi�cant range of w� and
w�	 The excitation in u� prevents in u� the propagation of the excitation
in both of the two directions�	 Therefore� the excitation in u� moves in
the opposite direction� compared to the placement of �	 If the maximum
of the �rst excitation is moved far enought the excitation in u� will inhibit
the previously excited regions in u�	 The excited region in u� will follow
the travelling wave in u�	 This process without external stimuli s keeps on
inde�nitely	

Here we cannot discuss in greater detail the analysis made by Amari
�but see also ����	 However� one can assume that more complex systems
than in Equations ��� and ��� are analytically intractable	 There are two
major ways to overcome this situation	 On the one hand� one can calculate
solutions of certain cases of ��� numerically in a direct fashion� or on the
other hand� one can simulate the evolutionary equations	 We decided to
take the second way� because direct numerical calculations may still be too
complex or are not very suitable to indicate the temporal evolution of the
dynamic patterns	

�An excitation in the layer u� indicates that the �eld at this position is in the refractory
state�
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� Simulations of DNFs in two spatial di�

mensions

If one looks for solutions of the DNF equations for the two�dimensional
case one may suppose to �nd in general the same types of dynamics as
Amari found for the one�dimensional �elds	 In this section we reproduce
di
erent dynamic patterns of two�dimensional DNFs	 This is mainly done
by showing pictures of neuronal layers at di
erent discrete times	

��� The simulation method

In our approach we have adopted the way of CA�simulations for reaction�
di
usion systems �see e	 g	 the work of Gerhardt et al	 ��� �� �� �� �
and the papers by Weimar et al	 ���� ���	 In these methods time and
space of the equations were discretised in order to �nd a limited number of
possible states of the medium	 In contrast to common cellular automata
they had to choose larger neighbourhoods with di
erent weights	 This is
more realistic because di
usion is not restricted to the nearest neighbours�
and� on the other hand� the amount of di
usion decreases with greater
distance	

A more straightforward approach is to rewrite the evolutionary equa�
tions �e	 g	 ���� as as set of di
erence equations	 Then� one can use for
the �eld variable u numerical values of a certain range	 The convolution
term

R
w�x�f �u�x�dx will be threated as a sum�

Pk�r
k��r w�k�f �u�x� k�	

For example� Equation ��� can be rewritten as a di
erence equation in the
above sense�

ut��i � uti �
�uti �

Pr
k��r�wkf �uti�k � � h� sti

�t�
� ���

Note� that the lower index indicates a position in space and the upper
index is a discrete moment in time	 Of great interest will be the value of
r� which is the range of the neighbourhood	 If r is relatively small� than
the calculations will be faster compared to greater values of r	 Ideally� r
should be large �ranging over the entire �eld� to ensure� that the di
erence
equations are as similar as possible to the di
erential equations	 Of course�
by doing the simulations one should �nd a good compromise� the value of
r can be decreased as long as the qualitative behaviour of the dynamics
doesn�t change signi�cantly	 Equation ��� can be easily generalised to
express the di
erence form of Equations ���	 But one should be aware
that the calculations for the neighbourhood for more than one layer are
more time consuming	

Before we look in detail at the simulation results we address a last
question in this respect� How one should deal with the boundary of a
�eld	 There are two major methods of traditional CA�simulations	 Either
one thinks of the �eld as a circle �in one dimension� or as a torus �in two
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dimensions�	 Or� on the other hand� one applies the zero��ux boundary
condition� which states that there will be no in�uence to border cells from
the outside	 For all the following simulations we used the second point of
view	

��� Single�layered DNFs

Our �eld consists of ���x��� discrete points� stored in a matrix U	 The
connection function is stored in another matrix W and the input in ma�
trix S	 The values for the elements of W are generally calculated by the
function w�x� � w�x�� x���

w�x�� x�� � a� � exp���x��
���� � �x��

������

a� � exp���x��
���� � �x��

������ ���

which is a two�dimensional mexican hat �Fig	 ��	 The range for x� and x�
depends on r �see Equation ����	

In the following �gures� we show some pattern formation processes
of di
erent dynamic types	 Qualitatively� in the two�dimensional case of
one�layered DNFs one �nds the same types of pattern dynamics as in the
one�dimensional case �cf� ����	 In Fig	 � we have two initial excitations of
di
erent diameter	 The larger one dies out whereas the smaller one survives
due to the nearly same sized positive �excited� region as the connection
function w	 Note� the two excitations don�t in�uence each other� because
r is small	 One interesting feature of DNFs is the support of converging

Figure �� An example of an initial excitation which dies out 	on top of the pictures
 and one
which becomes stable 	on bottom of the pictures
� The value of r is ��� the excited region of
the lower activity is about  space units wide� The pictures are snapshots after t � �� �� �� ��
time steps from the left to the right�

and coexisting excitations �Fig	 ��	 This becomes important in modelling
short term memory functions of the brain by layered neuronal tissue	 A
richer dynamic emerges if one gets rid of the homogenity of the �eld� e	 g	
by introducing asymmetric connection functions as shown in Section �	

�For all pictures we have the following colour conventions� a medium gray shows the �eld
in the rest state 	about u � h
� a darker gray indicates refractory regions� and places of a light
gray are in the excited state�
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��� Two�layered DNFs

As mentioned in Section �� DNFs of two layers support travelling waves	
Spiral waves are very stable examples of them and are of great interest in
investigating active media �e	 g	 ����	 If one sets up the �eld by appropri�
ate initial conditions �as described in Section �� a spiral wave will emerge
�Fig	 ��	

Waves in two�dimensional excitable media have some important prop�
erties� among them are the curvature and dispersion relation	 Without
analysing these relations in detail for our model we like to mention that
our simulations include both e
ects� which in�uence the propagation speed
of a wave	 The curvature relation states� that convex wave fronts travel
slower than plane waves� and concave wave fronts travel faster than plane
waves	 If the speed of waves increases with an increasing wave length� then
the medium includes dispersion	 In the �rst three pictures of Fig	 � one
can see the demonstration of the curvature relation� i	 e	 the part of the
converging waves travels quicker �due to the convex wave front� as the rest
of the wave	 The last picture of this �gure shows the same situation as in
the right picture of Fig	 � but for a slightly changed �increased� parameter
w� �Equations ����� which a
ects the frequency of waves	

� Simulation results

One question one should ask is� How valueable are all the simulations of
the IDEs� Answering this question rises some problems due to the missing
analytical results� at least in the two�dimensional case	 Of course� it is pos�
sible to compare the results of Amari for the one�dimensional DNFs with
the results one gets in applying the simulation method to one�dimensional
DNFs	 In principle� one can say that qualitatively one �nds the same types
of pattern dynamics as Amari stated	 However� a closer look at the quan�
titative level reveals some di
erences� some of them should be mentioned
here� Because Amari made no assumptions about the boundaries of �elds

Figure �� An example of converging 	on top of the pictures
 and coexisting 	on bottom of the
pictures
 excitations� The value of r is ��� the radius of the positive region of the kernel w is
about � space units wide� The pictures are snapshots after t � �� �� �� �� time steps�
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�he assumed unlimited �elds� the simulations show sometimes unexpected
patterns at the boundary	 Amari determined certain conditions which pro�
duce the �ve types of dynamics	 These conditions hold only for continuous
�elds	 In simulations with discrete time and space we only can approximate
these conditions	 Nevertheless� we could produce the supposed behaviour
of all types	 A detailed analysis of this approach can be found in ���	

Another way to �nd out something about the correctness of the simu�
lations is to vary a few crucial parameters and than to compare the results
of the simulations	 If one can detect di
erences than the simulations are
unstable and sensible to simulation parameters� which would state that the
results are of no great interest	 As an example one can change the parame�
ter r	 From a certain value the enlarging of r should produce no signi�cant
di
erence	 For example� in Fig	 �� the crucial part of the one�dimensional
mexican hat function is between �� to ��� i	 e	 the in�uence of cells which
are placed further than � space units away can be neglected	 For larger r
the calculations need more time	 Therefore� we have choosen always the
smallest possible value for r	 In the case of Fig	 � it would be � or �	 Of
course� a smaller r would narrow the range of inhibiting connections and
the result of the experiments would be not meaningful	

There is one more crucial parameter in the simulations� It is the time
constant � together with the time step �t in Equation ���	 In our simula�
tions we assume �t � � to be constant	 It turned out that the denominator
of Equation ��� should be greater than � in order to prevent the �eld to
oscillate� i	 e	 � � �	 But if one is interested in oscillations one should
chose � � �

The above discussion shows that the CA�like approach is worthwhile
to consider	 Moreover� the method is of great advantage in studying the
in�uence of di
erent parameters whilst the simulation is running	 A direct
numerical analysing of DNFs with changing parameters or even with a
time dependend input would be on the other hand very hard and time
consuming� compared to our very simply�ed method	

Figure �� A spiral wave in a two�dimensional DNF with two layers� Only the u��layer 	in
Equations 	

 is shown in the pictures� The u��layer shows a similar dynamics with a small
time lag� The value of r is � The pictures are snapshots after t � �� � �� � time units�
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� Applications

One of the neural organizations found in mammalian brains� which are in�
volved in spatio�temporal computations are so�called computational maps
�CMs�	 CMs are a class of neural maps with certain functions	 The com�
putational properties of CMs vary with their spatial position	 The position
of a neuron in the map largely determines ��� which part of the input it
receives� ��� how this input is processed� and ��� to what target the result
eventually is transfered �see ��� for a discussion�	 CM discovered so far
are mostly involved in processing sensory information and programming
of movements �����	 In motor maps� systematic variations of movement
parameters �amplitude and direction� are represented topographically on
the neural layer	 The computational character of these maps is obvious�
the topographically represented movement command must be transformed
into spatio�temporal patterns of motoneuron activity� and the centre of
activity on the map determines the features of the transformatio	

An example of a CM is the motor map of the mammalian superior
colliculus �SC�� which major role is to control gaze shifts �saccades�� for
a review see e	 g	 ���� ��� ��	 Recording studies of the cat�s SC �����
showed that during a saccade a hill of activity travels in the motor map
from its initial location towards the �xation zone	 The instantaneous hill
location on the map speci�es the remainig motor error	 This dynamic can
be modelled by using a two�dimensional DNF of one layer	 A localiced
excitation in that DNF can be thought of as a hill of activity	 In order to
realize a movement of such a hill we introduce asymmetric place dependend
connection functions w	 Let X� � X��p�� X� � X��p� with p � �p�� p��
being a position in space	 The connection function �Equation ���� can be
now written as�

w�x�� x�� X�� X�� � a� � exp���x� �X��
���� � �x� �X��

������

a� � exp���x� �X��
���� � �x� �X��

������ ���

Figure �� The curvature and dispersion relation� The �rst three shnapshots show a curvature
e�ect 	t � �� �� ��
 and the last picture is a demonstration of the dispersion in the �elds� The
parameters of the right picture are the same as in Fig� � at time t � � apart from a larger
value for w�� Here again only the u��layer is shown�

	



For X� �� � and�or X� �� � the centre of the function ��� is replaced
compared to the origin of the coordinate system �Fig	 ��	 We cannot
discuss the model here in detail �for more information see ����� but the
idea should be clear� A smooth variation of X� and X� in the model of the
motor map would ensure� that every activity hill can travel in a prede�ned
direction �here to the region representing the fovea�	

So far� the connection function w has been kept �xed in time	 The
dynamic of excitation patterns will exhibit still more complex behaviour
if we introduce a �global� time dependend connection function� i	 e	 X� �
X��t�� X� � X��t� in Equation ���	 This change opens the way to another
application� namely to the process of dead reckoning	 Dead reckoning� also
termed path integration� is a navigation process which allows an animal
to update its position �in relation to a point of reference� in an internal
representation based on signals generated during locomotion ���� ��� and
����	 No further visual information which identi�es landmarks is needed	
The only necessary information is solely generated by movements	 By
means of this navigation process an animal is able to keep track of its
position in the environment in relation to its starting point �or any other
point of reference�	 The necessary information is stored in a geocentric
coordinate system� i	 e	 the position of the animal and of the point of
reference is kept in an earth�centered map	 Thus� the animal is able to
determine the direction of the starting point from its current point and
can always move to it without any visual guidance	

Physiological experiments of the navigation system in rats have shown
that certain neurons in the hippocampus �re when the rat is placed at
a particular position in the environment� regardless of how it is oriented	
Cells in the presubiculum �re when the rat�s head is oriented in a spe�
ci�c direction regardless of where the rat is �����	 This situation can be
modelled �the model is described in greater detail in ���� by an two di�
mensional dynamic neural �eld u�x� t� and a dynamic connection function
w�x�� x�� X�� X��	 The current position of the animal is indicated in u by a
hill of activity �the exact position is the maximum of u� i	 e	 the top of the
activity hill�	 If the animal moves in a speci�c direction with a particular
velocity this hill will move also in the �eld in the same direction and a
certain distance	 These movements are speci�ed by w� whereas w will be
updated continuously as the animal moves on	 Information of the speed
and direction of the animal�s movements has to be transformed to X� and
X� in an appropriate manner	

� Conclusion

The paper has described successful CA�like simulations of two�dimensional
DNFs� consisting of one and two layers	 The results were compared to
the analytical investigations of Amari	 It turned out� that the proposed
method is of great use� if an analytical solution of the regarded IDE is
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not available	 Further we have argued� that our approach o
ers some
advantages compared to direct numerical calculations� e	 g	 for the visual
following of an ongoing simulation process with time�varying parameters	
Particularly� we found the same types of pattern dynamics as Amari found
for one�dimensional �elds	 Additionally� our results indicate that DNFs of
two dimensions support target and spiral waves	

In the context of information processing in tissues we used the results
to model two spatio�temporal transformation processes found in the mam�
malian brain	 Further experiments� e	 g	 in application to autonomous
mobile robots� have to elaborate and re�ne the models further	 An ex�
haustive search for di
erent dynamic behaviours in two�dimensional DNFs
has not been reported so far� at least not for more than one layer	 Thus�
simulations like those shown in this paper may help to analyse DNFs with
greater complexity as Amari has done	
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