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ABSTRACT

The development of neuronal branching patterns mainly proceeds by branching events
at terminal segments. The randomness in the occurrences of these events is the major
cause of the variability that is observed in the final topological structures of neuronal
trees. A general observation in neuronal trees is the existence of a branch power relation
between the diameters of the segments at branch points. Because of this correlation, total
area and volume will become dependent on branching pattern topology. A quantitative
assessment of this finding is given. How topological variation propagates into variation
in total area and volume, using topological growth models for producing random tree
topologies and a simple metrical parametrization is discussed.

Keywords: Dendrites, morphology, variability, growth.

1. Introduction

The geometry of natural dendritic branching patterns shows large variability, as is
demonstrated in many studies of neuronal morphologies (e.g., [1-3], [5-7], [12-15].
This variability is expressed in the number of segments, the length and diameter of
segments, and the way the branching pattern is embedded in the three-dimensional
space. An additional source of variability is in the topological structure, i.e., the
connectivity pattern of the segments. This variation occurs because of the many
ways to connect segments in the formation of a tree. The variability in the local
elements also propagates into global geometrical measures of the branching pattern,
like total area, volume, path lengths and radial distances.

So far, the interest in the literature has not been focussed on variability in itself.
Nevertheless, it is expected that variability in structure also results in variability
in functional operation. Additionally, variability has its origin and the mechanisms
underlying its expression may also be dominant in the emergence of the dendritic
morphological features themselves. The recent findings concerning topological vari-
ability may serve as an example. It has been shown that dendritic branching
patterns have a topological variability that can fully be explained by their growth
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patterns [10]. The primary source of variability is the randomness by which branch-
Ing events occur at the segments in the tree during outgrowth.

In the separation of metrical and topological aspects, it was initially assumed
that these aspects are independent. This assumption may be violated, however,
when structural correlations exist within the branching patterns. One such correla-
tion, observed in many dendrites, concerns the branch power relation between the
diameters of parent and daughter segments at branch points [4,5]. An immediate
consequence of this rule is that the diameters of the segments become dependent
upon the connection pattern of the segments, i.e., their topological structure.

The question, addressed in this paper, is how and to what extent the topological
variation will propagate via the branch power rule into a variation in the global
metrical properties area and volume.

It will be approached by calculating the area and volume of trees with a fixed
and simple metrical parametrization but with full variability in their topological
structures.

2. Dendritic Topology

For a given number of segments there are many ways to connect these segments
in the formation of a binary branching pattern, as is shown in Fig. 1 for trees of
degree 8, i.e., with 8 terminal segments. The tree types are characterized by their
tree asymmetry, defined by the mean asymmetry in subtree pairs at all the branch
points [10]. The tree asymmetry measure has a value of 0 for strict symmetrical
and a value approaching 1 for strict asymmetrical trees.

Natural tree types do not occur with equal probabilities. These probabilities
appear to depend strongly on the growth pattern as could be demonstrated by [8],
9] and [10], using a two-parameter (Q-S) growth model. The parameter Q in this
model relates the branching probabilities of intermediate and terminal segments,
while parameter S determines the order dependency [9]. Characteristic modes of
growth are the random terminal growth mode, (@, S) = (0,0), allowing only termi-
nal segments to branch, each with the same probability, and the random segmental
growth mode, (Q,S) = (0.5,0), allowing all segments to branch with equal proba-
bility.

Figure 1 shows a symmetrical tree (a), an asymmetrical tree (b) and random
trees for the random terminal growth mode (c-h) and the random segmental growth
mode (i-n). Note, that the trees in (i-n) have on the average greater tree asymmetry
values than the trees in (c-h).

The analysis of observed dendritic branching patterns has revealed that their
tree-type frequencies correlate with a mode of growth that is close to the random
terminal growth mode [10]. For that reason, we will use this growth mode to produce
random trees with a realistic topological variability. The way to produce random
trees is described in [10].



Topological Variability on Dendritic Geometry 1203

0=0 S=0 0=0 5=0 =.5 S$=0 0=.5 $=0
a AC:[E AE:E AFLE%I
asym=0 asya=, ra=1.e3 asym=.419 ra= 1.06 asym=.,857 ra=li asym=,.619 ra=i.11
area=4330 au=En2 ru=1.08 e ru=1i ru=1.,34
volume=1290 mu=nm3
9 [l asssnss
—
360 micron
| | 0
I | =
asym=., ra=1.o04 asym=.,6 ra=1.e6 asym=.619 ra=1 asym=.6 ras=1.e06
rusi.11 ru=1.19 ru=i ru=1.19
b EE E | E n
asym=.857 ra=1.14 asyn=.571 ra=1.e3 asyn=.419 ra=1.06 asym=.286 ra=i.el asym=.619 ra=1.11
ru=1.+41 ru=1.06 ru=1.2 ru=1{.e3 ru=1.34

Fig. 1. Illustration of a symmetrical tree (a), an asymmetrical tree (b) and random trees, produced
by the random terminal growth mode (@, S) = (0,0) (c-h) and the random segmental growth mode
(Q,S) = (0.5,0) (i-n). The trees are of degree 8 and characterized by their tree asymmetry values
(“asym”). Terminal segments have a length of Iy = 132 um and diameter d¢ = 0.7 um, the length
ratio of intermediate and terminal segments equals r = 0.45 while the branch power is taken
equal to e = 1.5. The area (“ra”) and volume (“rv”) of each tree are calculated relative to the
symmetrical tree. Note, that these outcomes are independent of the actual choice of I; and d:.

3. Topological Structure, Dendritic Area and Volume

3.1. Geometrical Parametrization

A simple parametrization of the dendritic geometry is assumed. All segments have
a fixed length, l; for terminal and [/; for intermediate segments. The diameter of
terminal segments will be fixed at d;. A branch power relation is assumed between
the diameters of a parent and its daughter segments at a branchpoint, i.e., d7 =
d$ + d5. Then, the diameter of an intermediate segment s is determined by the
number of terminal segments n; in its remote subtree as

d¢ =n,dé or d,=dml/®. (1)

Dendritic Area and Volume

A dendritic tree of degree n has in total 2n — 1 segments of which n terminal and
n — 1 intermediate segments. The membrane area of such a tree is equal to the sum
of the area of all its terminal and intermediate segments
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n—1

2 n—1
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when d; and [; denote the diameter and length of segment s. Assuming a branch
power relation (Eq. (1)) we obtain

li — e
A=ﬂ'dtlt n+—Zn£/]=At[n+'rSA] (3)
It
k=1
Here, A; denotes the terminal segment area A; = wd;l;, r = l;/l; denotes the length
ratio of intermediate and terminal segments and S, = }:‘;11 'n;;lc/ i :;; (di/d;)

denotes the sum of intermediate segment diameters, normalized with respect to the
terminal segment diameter d;. '
In a similar way the dendritic volume can be expressed as

Vo= Vt[n + TSvl (4)

with V; denoting the volume of a terminal segment and Sy = 72! n?/¢ =

:;: (di/d:)? denotes the sum of squared normalized diameters of intermediate
segments.

The quantities S4 and Sy are functions of the degree n, the branchpower e and
of the topological structure. Separating in Eqs. (3) and (4) the contributions by
terminal and intermediate segments we obtain A'*™ = nA,, V™ = pV,, At =
A;rS4 and V'™ = V;rSy. The relative contributions of intermediate segments to

total area and volume and to the terminal segment contributions can be expressed

as . .
Amt 3 TSA th 3 TSV
A n+rSy’ V n+1rSy’
and (5)
Aint 18 TSA Vint 333 TSV
Aterm T’ term T

In conclusion, Eqgs. (3)—(5) show that the terms S4 and Sy play a crucial role in both
dendritic area and volume as well as in the relative contributions of intermediate
and terminal segments to these global geometrical properties.

3.3. Effect of Topology on S4 and Sy

The terms S4 and Sy depend on the connection pattern of intermediate segments
as an immediate consequence of the branch power relationship. This is clearly
demonstrated by their outcomes for trees of different topologies, given in Table 1.
Both S4 and Sy become larger when the trees become more asymmetrical. This
effect becomes stronger for decreasing branch power. Of course, the terms S, and
Sy increase with increasing degree n, i.e., when the trees become larger.
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Table 1. Influence of the topological arrangement of intermediate segments on the sum of nor-
malized diameters S4 = :;ll(dk /d¢) and the sum of squared normalized diameters o —

Z:;} (dr/d¢)? of intermediate segments. The calculations are done for individual symmetri-
cal and asymmetrical trees and for sets of random trees, produced by the random terminal and
random segmental growth mode. For each set, 1000 trees were generated from which mean Sy
and Sy values are calculated The results are obtained for two values of the degree n and three
values of the branch power e.

T —C—— — S— ——— T T e e L NN
e e T R i S e e e e e e S e I o

n=2~8 SA

Sy

sym Q=0 Q=0.5 asym sym =0 =00 asym

e = 24.00 27.30 30.16 35.00 112.00 138.81 163.79 203.00
e=1.5 15.39 16.82 17.96 20.07 38.78 45.78 51.56 62.04
e = 12.49 13.41 14.06 15.31 24.00 27.57 30.13 35.00

n= 16 Sa Sy

sym Q=0 Q=0.5 asym sym =0 Q=05 asym

£z ] 64.00 76.60 94.58 135.00 480.00 651.16 923.22 1495.00
g=1.5 37.13 41.70 48.38 63.00 117.87  147.25 195.25 295.86
e =2 28.97 31.70 35.21 43.47 64.00 76.71 94.51 135.00

Because S4 and Sy are functions of the topological structure, they will show
variation when random trees are produced. Therefore, the columns “Q = 0” and
“Q = 0.5” contain mean values, obtained by generating 1000 random trees according
to the corresponding growth mode. The coefficients of variation cv(S4) and cv(Sy)
for these sets are given in Table 3. The outcomes demonstrate that the coefficients
of variation increase with increasing tree asymmetry, increasing degree and with
decreasing branch power.

3.4. Propagation of Variance in S4 and Sy into Total Area and Volume

Equations (3) and (4) show how the total dendritic area A and volume V' depend on
the terms S 4 and Sy, while these terms in turn depend sensitively on the topological
structure, as is demonstrated in Table 1. This finding is also illustrated in Fig. 1,
which shows how area and volume differs between a symmetrical, an asymmetrical
and a number of random trees. To calculate quantitatively how cv(S4) and cv(Sy)
propagate into cv(A) and cv(V), respectively, we will assume that the variation in
the other terms A; or V;, n and r is zero. Then, using Egs. (3) and (4), the standard
deviations in A and in V can be given by

o(A) = Asra(S4) and o(V) = Ara(Sy). (6)

Realizing that cv(z) = o(x)/x we obtain for the coefficients of variation cv(A)
and cv(V)

cv(A) = - SA—C’U(SA) and cv(V) = S—-%L—W
%

Py - cv(Sy) . (7)
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4. Results

4.1. Area and Volume Ratios

The role of topology in dendritic area and volume is clearly expressed by calculating
the area or volume of a tree relative to the most symmetric tree. In the ratios
A(tree)/A(sym) and V(tree)/V(sym), the terminal segment area A; and volume
Vi will cancel and the ratios remain only as functions of n, 7, e and, S4 and Sy.
Figure 2 shows that the topological difference between symmetric and asymmetric
trees can result in large differences in area and volume (for instance up to a factor
3 in the case of e = 1 for the present parameter set). Trees with realistic topologies
(e.g., produced by the random terminal growth model) have outcomes much closer
to those of the corresponding symmetrical trees.

_H(sum]=.13£5 mu s A(sYMI=9494 mumx?2 A(SYmM)=8429 mu=x?2

N
o

Z
d l & e
| cu=.06 .11 . sl cu= .83 .06 | cu= .82 .03
39 - p -y |
N W N
E*I E C -
S N .
0 (1Y) ()
Q (T - Q
[ L. L
ﬂ.'l + l m + m | ]
$
1 1 * 1- -

———T T r e e SO, /. T T
sym 0=0 0=.5 asym sym 0=0 0=.5 asym sym 0=0 0=.5 asynm

Visym)=,.1179ES mumm3 Visym)=3507 muxmx3 _V(sym)=2276 mu==3

2

(¥
¥

i

; 1 Ets
sym 0=0 0=.5 asym

[y

. T | 1
sym 0=0 0=.5 as

gm

# T e e e T T __-—ﬁ

b d f
5 cu= .18 .23 5 cu= .89 .15 5 cu= .06 .11 s
(Ty] (1] W
; ; " =
N . “, =
a a a
2 ] =
= = 2 &
o | =] 4
o -] I O
- - | * - +

1..

Y ] T !
sym Q=0 0=.5 asym

Fig. 2. Illustration of the effect of the topological structure of dendritic trees on area and volume.
Each panel gives the result of a symmetrical tree (“sym”), an asymmetrical tree (“asym”) as well
as of random trees, produced by the random terminal growth mode (“Q = 0”) and the random
segmental growth mode (“Q = 0.5”), all of degree 16. Terminal segments have a length l; = 132 um
and diameter d; = 0.7 um, the length ratio of intermediate and terminal segments equals » = 0.45.
Area and volume are calculated relative to the symmetrical trees (printed above the panels). The
figure illustrates the effect of topology within each panel, as well as the effect of the branch power
with values e = 1 (panels a and b), e = 1.5 (panels c and d) and e = 2 (panels e and f). In addition,
the figure illustrates the effect of topology and branch power on the coefficients of variation in the

area and volume of the random trees. Note, that these outcomes are independent of the actual
choice of [ and d;.

4.2. Contribution of Intermediate and Terminal Segments to A and V

Topology plays a role only via the summed area A™ and volume V" of the inter-
mediate segments. Therefore, the relative contribution of intermediate and terminal
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segments to the total area Ai"/A*™ = rS,/n and volume Vot /yterm = G, /n
[Eq. (5)] determine the extent of this role. For this reason, the ratios S4/n and
Sv /n are calculated for different topologies and for several values of the parameters
e and n and presented in Table 2. Actual area and volume ratios are then easily
obtained by multiplying these outcomes with the value for r = [;/l;. From Table 2,
it can be concluded that the contribution of intermediate segments to area and
volume is consequently larger than of terminal segments, in the case of 7 = 1. This
result is based on the fact that intermediate segments have greater diameters than
terminal segments as a consequence of the branch power relationship. In the case of
unequal lengths of intermediate and terminal segments, say r < 1, it is possible that
the product terms rS4/n and rSy /n become smaller than one, implying that ter-
minal segments then will dominate in their contribution to area and volume. Note,
that the coefficients of variation, calculated for $§4 and Sy, and given in Table 3,
also apply to the ratios S4/n and Sy /n.

Table 2. Values for the ratios S, /n and Sy /n, calculated using the outcomes of Table 1. These
quantities indicate the ratio of the contributions of intermediate and terminal segments to the total
area and volume, respectively, assuming equal segment lengths. In the case of unequal segment

lengths, the ratios Aint/Aterm — G, /n and Vint/yterm — Gy /n can easily be obtained by
multiplying the presented numbers in this table with the value for r = I;/l;.

n—8 SA/TL SV/“'

sym @=0 @=105 asym sym Q=0 Q=05 asym

g=i] 3.00 3.43 3.79 4.38 14.00 17.91 20.61 25.38
e=1.9 1.92 < | 2.25 2.01 4.85 5.76 6.48 7.75
e=12 1.56 1.67 1.76 1.91 3.00 3.42 3.79 4.38
n =16 Sa/n Sy /n

sym Q=10 Q=05 asym sym Q=0 Q=0.5 asym

e= 4.00 4.75 5.94 8.44 30.00 40.11 58.07 93.43
e=1.5 2.32 2.61 3.01 3.94 7.37 9.22 12.14 18.49

e =2 1.81 1.97 2.20 2.72 4.00 4.74 5.88 8.44

4.3. Topology-Induced Variation in A and V

Like the quantities S4 and Sy, cv(S4) and cv(Sy) also are functions of n, e and
topology only, and thus independent of the actual lengths and diameters of the seg-
ments. The propagation of cv(S4) and cv(Sy) (Table 1) into A and V is described
by Eq. (7), and thus depends additionally on the parameter 7, the length ratio of
intermediate and terminal segments. The coefficients S/[S + n/r] in Eq. (7) are
smaller than one. Therefore, cv(S4) and cv(Sy) represent maximal values for the
coefficients of variation in A and V.

Like cv(S4) and cv(Sy), cv(A) and cv(V') also increase with increasing asymme-
try and decrease with increasing branch power. For instance, in the given examples
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in Fig. 2 with r = 0.45, values of 10 and 24 percent, respectively, are obtained
for trees, produced by the random segmental growth model, with a branch power
of e = 1. For trees with realistic topological variation (produced by the random
terminal growth model) and with a branch power of e = 1.5, these values are 3 and
10 percent, respectively.

Table 3. Coefficients of variation in S4 and Sy for the sets of random trees in Table 1, generated
by the random terminal growth mode (Q = 0) and the random segmental growth mode (Q = 0.5).
Note, that these cv-values also apply to S4/n and Sy /n in Table 2.

n==8 5.4 Sy

Q=0 Q=05 Q=0 Q=05
e = 0.08 0.10 0.14 0.17
e=1.5 0.06 0.07 0.11 0.13
g =1 0.04 0.06 0.08 0.10
n=16 S A Sv

Q=0 Q=05 =0 =05
— 0.09 0.14 0.18 0.24
e—=1.5 0.05 0.10 0.12 0.19

e = 0.04 0.07 0.09 0.14

5. Discussion

The present study has demonstrated that topological variation propagates into
variation of area and volume. It is shown how the topological configuration of the
intermediate segments influences, via the branch power relation, the diameter distri-
bution of these segments and consequently the total area and volume. The extent of
this variability propagation is estimated using a simple geometrical parametrization
of dendritic geometry. Maximal attainable values for the coeflicients ot variation in
area and volume, caused by the topological variability, could be estimated (Table 3).
For instance, for trees with realistic topological variability (QQ = 0), branch power
e = 1.5 and degree n = 16, these values are 5 and 12 percent, respectively.

For the present study, fixed segment lengths are assumed. This is not a real-
istic assumption. Especially terminal segment lengths vary substantially within a,
dendrite. This fact, however, will not interfere with the present conclusions be-
cause the parameters l;, A; and V; can be interpreted as the mean length, area and
volume of terminal segments, respectively. Likewise, l; can denote the mean length
of intermediate segments.

Experimental data of coefficients of variation in dendritic area and volume show
in general much larger outcomes than that presented in this paper. For instance,
cv(A) in cat motorneurons can range from 0.29 [3] up to 0.74 [2] and cv(V') ranges
from 0.49 [12] up to 0.92 [2]. Clearly, the observed variability also originates from
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variation in other parameters like the degree n, the lengths /; and /; and the branch-
power e. For a proper comparison these variations should also be included in the
analysis, which is the subject of the present research. Dendritic topology plays a
role in dendritic function. It has a clear impact on the electrotonic length of the
dendrite, on dendritic input conductance and is involved in signal transter proper-
ties as is recently demonstrated in [11]. The present study has shown how area and
volume are involved in these structure-function relationships in dendrites.
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