LECTURE SCRIPT

— Dynamical Systems and Autonomous Agents —

Part I: Theory of Dynamical Systems!

Ralf Der & J Michael Herrmann?
Leipzig University, Institute for Informatics
Augustusplatz 10/11, D-04109 Leipzig

(preliminary version of May 31, 2002)

!This is a version of the script where the quality if the figures is reduced in order to restrict the size of the
file. For a version with high-resolution pictures please contact the authors.
Zpresent address: G’ottingen University, Institute. f. Nonlinear Dynamics, Bunsenstr. 10, D-37073 G’ottingen



Outline

Abstract

nonlinear dynamics and autonomous agents

| N° | date | speaker | topic exer. | ret. |
1 8. 4. RD Introduction: Agents in an environment
2 | 15. 4. MH Agent architecture and control
3 | 22. 4. RD Braitenberg vehiclesand analysis
4 | 30. 4 MH Differential equ’s: linear systems ser. 1
5 6. 5. MH Differential equ’s: nonlinear systems
6 | 13. 5. MH Bifurcations and Chaos ser. 2 | ser. 1
- | 20.5. - (pentecost)
7 | 27.5. MH Chaos 11 ser. 3 | ser. 2
8 3. 6. RD Self-organization, synergetics
9 | 10. 6. RD Living systems as autonomous agents ser. 3
10 | 17. 6. MH Self-organized criticality and evolution ser. 4
11 | 24. 6. RD Life and the edge of chaos
12 | 1. 7. RD Collective behavior in biospheres ser. 4
- 8. 7. RD Written examination

Table 1: Schedule of the course. Entries after May 31, 2002 are subject to change.

Notes and comments

Please send any comments about content and general organization of this script to der@informatik.uni-
leipzig.de or michael@chaos.gwdg.de, in particular any reports on typos and other minor error will be
appreciated by Michael.



Contents

I Theory of Dynamical Systems

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Agents in Artificial Intelligence and Cognitive Science . . . . . . . . . . .. .. ... ...
Causality . . . . . o o e e
Embedded agents . . . . . . .. L.
Autonomous robots . . . . ...
Living systems . . . . . . . L.

Dynamical systems . . . . . . ..o e e e e e e e e e

2 Conceptual framework

2.1
2.2
2.3
24

2.5
2.6

The model of an agent . . . . . . . . . . L
The agent in the world . . . . . . . . . . . .. L
The principle of adaptivity . . . . . . . . . ..
Dynamical systems . . . . . . . ..o e e e e e e e e
2.4.1 Time-discrete dynamical systems as iterated maps . . . . . ... ... . ... ...
Time continuous dynamical systems . . . . . . .. . . ... L.

Perspectives . . . . . . e e e e e e e e e e e

3 Linear differential equations

3.1

3.2

3.3

3.4

3.5

Phase portraits . . . . . . . . . e e e e e e
Systems of differential equations . . . . . . . ... .o oL Lo
Linear systems . . . . . . . . . .l
3.3.1 Strogatz’ love affairs . . . . . .. ..
Qualitative analysis . . . . . . . . . . e e e e
3.4.1 Moreon love affairs . . . . . .. ..
Remarks . . . . . . . e
3.5.1 First integrals for nodes and saddles . . . . . . ... ... ... ... L.
3.5.2 Coordinate transformations . . . . . . . ... ... Lo

3.5.3 Spirals in polar coordinates . . . . . . . . .. L.



CONTENTS II1

3.5.4 Timeinversion . . . . . . . . . . . e e e e 17
3.5.5 Center . . . . .. 17
3.5.6 Higher dimensions . . . . . . . . . . . . 17

3.6 Light-seeking robot . . . . . . . .. L 17
3.7 Stability . . . . L 20
4 Nonlinear systems 21
4.1 Linearization . . . . . . . . o Lo e e e e 21
4.1.1 Stability analysis in the one dimensional case . . . . . .. .. .. ... ... .... 21
4.1.2  Stability analysis for dimensions larger than one . . . . . .. .. .. .. ... ... 21

4.2 The moving one-eyed robot, . . . . . . . ..o e 22
4.3 Two-eyed robot . . . . . . ..o 23
4.3.1 Dynamics in SENSOT SPACE. . « « « v v v v v vt e e e e e e e e e 23
4.3.2 The linear control regime . . . . . . . . ... ... o o 25

4.4 A sample limit cycle . . . . . .. 25
4.5 The Poincare-Bendixon Theorem . . . . . . . . . . . ... ... .. 26
4.6 Three dimensional systems . . . . . . . . . .. L e e e e 26
4.6.1 Two incommensurate frequencies form a torus . . . . . . . .. .. ... ... 26

4.7 Braitenberg vehicles . . . . . ... 29
4.7.1 Vehicle 1 . . . . . . e 29
4.7.2 Vehicle 2 . . . . . 29

5 Bifurcation theory 32
5.1 Introduction . . . . . . . . . o L e e 32
5.2 General framework . . . . ... 32
5.3 Saddle-node bifurcation . . . . .. .. Lo L 33
5.4 Transcritical bifurcation . . . . . . .. L oL 34
5.5 Pitchfork bifurcation . . . . . . .. L L 34
5.5.1 Standard case . . . . . . ... L 34
5.5.2 Subcritical pitchfork bifurcation . . . .. .. ... ... ... ... ... .. ... 35
5.5.3 Imperfect bifurcation and catastrophes . . . . . . . . ... . oL oL 36
5.5.4 Decision making in robots . . . . .. ... oL o 36

5.6 Hopf bifurcation . . . . . . . ... 37
5.6.1 Higher-dimensional systems . . . . . . . ... .. ... ... L 37
5.6.2 Standard case . . . . ... Lo 38
5.6.3 Degenerate case. . . . . . . ...l L Lo 40

5.6.4 Hopf bifurcation in a Braitenberg vehicle . . . . .. ... ... ... .. ..., 40



CONTENTS

6 Chaos
6.1 Sample systems . . . . . ... e e
6.1.1 Rossler system . . . . . ...
6.1.2 The Lorenz system . . . . . . . . . . . . . e
6.1.3 Chaotic Braitenberg vehicle . . . . . . . ... ... o oL
6.2 Attractors . . . . . .. L.
6.3 Lyapunov exponents . . . . . . . . . . . .. e e e e e
6.3.1 Prediction horizon . . . . . . . . ..
6.3.2 Numerical calculation of the largest Lyapunov exponent . . . . . .. .. ... ...
6.4 Poincaré section and Poincaré map . . . . . . . .. ... oo
6.5 Maps . . . . . e e e
6.6 Definition of a chaoticmap . . . . . . . . . . .
6.6.1 Two simple sample maps . . . . . . . . ..o
6.6.2 Lyapunov exponent of the 2zmodImap . . . . .. . ... .. ... ... ......
6.6.3 Symbolic dynamics in the 2z mod 1map . . . . . . . .. .. .. ... ...,
6.7 Logisticmap . . . . . . . . . . .
6.7.1 Phenomenology . . . . . . . .. L
6.7.2 Controlling the logisticmap . . . . . . . ... .. ..
6.8 Screen creatures . . . . . . ... e e e e e e

A Main ideas of this part

v

42
43
43
43
45
46
46
47
47
48
49
49
50
50
51
51
51
52
53

55



Part 1

Theory of Dynamical Systems



Chapter 1

Introduction

1.1 Agents in Artificial Intelligence and Cognitive Science

In the seventies the notion of an agent has been introduced into computer science. An agent in the
general sense is an entity which receives information from its environment and may execute various
actions in response to the inputs received. In the context of artificial intelligence, agents are pieces of
software acting on data structures. In contrast to this, we will be interested in agents acting in a material,
physical environment via material actuators. Before we are going to discuss problems connected with
agents in the real world, some more on the characteristics of software agents are to be mentioned.

A software agent is "licensed to act”. It carries out tasks autonomously, makes decisions and reacts to
changes in the environment according to its task. Agency refers to the degree of autonomy or indepen-
dence (www.ifs.tuwien.ac.at/oegai/). Autonomy (Eigengesetzlichkeit) and agency (Urheberschaft) are
to be distinguished. Often, the term agency sufficiently describes the property of the agent to actively
behave in its environment. Autonomy goes one step further in allowing the agent to find itself ways of
evaluating it present success or at least to establish by itself and when acting subgoals of its prescribed
task.

An intelligent (software) agent is a program that processes questions in an autonomous, flexible and
user-specific fashion and that returns to the user a structured result. An agent tries to analyze or
even to modify the task specified by the user in order to obtain answers that are relevant to the user
and optimized with respect to the user’s intentions. An agent can be characterized by the following
properties: goal-directedness, flexibility, cooperativity, the ability to start by itself, communicability,
adaptability, security, and mobility (adapted from Frank Puhl, Saarland University 1999). By main
stream Artificial Intelligence (AI) agents are thus considered as rational beings in an complex though
artificial environment,.

A related, but somewhat different view is taken in cognitive science. Cognitive science focuses on specific
aspects of human intelligence which are assumed to be implementable without direct reference to specific
properties of the underlying physical matter. The assumption that this is a meaningful approach has
been put forward by Newell and Simon (1976) in form of the physical symbol system hypothesis. We
cannot go into the details of debate on this strong claim. Critics from the point of view of connectionism
has been formulated by Smolensky (1988) and has provoked the anti-critics by Fodor and Pylyshyn
(1988). We should at least briefly note two fundamental problems which cannot be conveniently solved
by physical symbol systems (Dreyfus and Dreyfus 1990)

1. Frame problem. How to model change? What is relevant in a given context? What is changing
and what is constant? (D. C. Dennett, 1984)



CHAPTER 1. INTRODUCTION 3

2. Symbol grounding problem. How symbols relate to the real world? (symbol grounding problem,
Harnad, 1991; syntax grounding, Searle, 1990)

The formulation of a symbolic description is (after its prospective completion) supposed to allow for
efficient (or intelligent) reasoning concerning those aspects of the world, which are captured by the
symbolic description. The very formulation, however, conveys already the essential part of the intelligence
which we are then tempted to attribute to the symbolic reasoning system. An agent that is (in place
of ourselves) acting in the real world is thus confronted with the task to construct symbolic systems on
its own. The thus obtained symbolic descriptions are to be efficient with respect to the aspects of the
world which are important to the agent. What is relevant cannot be decided by the designer of the agent,
because this is unknown before the agent actually interacts with its environment and must therefore be
decided upon autonomously by the agent when it is autonomously interacting with the world.

It cannot be excluded (actually it will indeed be assumed in the following) that the agent for many tasks
will not need to produce a symbolic description. The systems, that the agent is equipped with in order
to construct, calibrate, apply and verify its internal systems, are referring to the real world or to what
is known about the real world to the agent. And already these systems, if of any use at all to the agent,
would necessarily allow the agent to do without symbolic descriptions in many instances. The fact that
e.g. humans have developed symbolic world models seems to imply that at some stage of intelligence
symbolic representations indeed may become essential. But we may not be able understand why they are
essential and from what level of intelligence they indeed are. Further, considering the level of intelligence
presently implementable in agents, it is questionable whether the large loop via symbolic representations
might not be easily become short-cut by the agents built-in drive for efficiency unless it is suggested by
a purely symbolic environment as considered in artificial intelligence.

1.2 Causality

Central to the argument given below is the notion of causality, i.e. the postulate that all phenomena
require a cause in order to come into existence. In its strong sense, causality states that similar causes
produce similar effects. Strong causality is indeed obeyed by many (though by no means all) natural
phenomena. Also it seems that to reveal strongly causal relations is the main goal when humans strive for
knowledge. Nature, however, cannot be reduced to strongly causal relations, which has been exemplified
with slight exaggeration by the famous butterfly effect. Such ’exceptions’ to strongly causal relations are
generally related to non-linear behavior. In these cases of weak causality, effects can be still related to
causes, but tiny deviations in the causes may give rise to enormous variations in the effects.

Weakly causal systems can be very efficient in carefully controlled environments. For example, a program
code lives essentially only in computers rather than in natural environments. Here weakly causal codes do
well (though an the expense of heavy debugging and fundamental restrictions on testability). In order
to obey strong causality, e.g. to allow for random distortions, the code must be strongly redundant.
Generally, in controlled environments, weakly causal systems can be successful, but in open, unknown,
natural environments successful performance should imply strong causality and in this way insensitivity
to noise, distortions, unforeseen changes etc. In the following, we will try to substantiate the claim
that, if there are possibilities for control, such as exerted by an agent, weakly causal relations can be
beneficially exploited even in natural environments and even if the environment is not fully controllable.
The claim is that a well-balanced combination of weak and strong causality has the potential of providing
a basis for intelligence.

1.3 Embedded agents

The challenges which became unavoidable in control of autonomous robots have lead to fields of study
which are called embodied cognitive science or situated artificial intelligence. Central to these approaches
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is the notion of situatedness meaning a situation in which an agent is in maximum contact (by its sensors)
with the environment so that it can plan its further actions in an informed way even without a world
model. Material constraints and properties are to be exploited rather than being ignored. Or in the
words of Rodney Brooks: “Nature is your friend, not your enemy”.

1.4 Autonomous robots

Mobile robots are instantiations of autonomous agents, which most clearly represent the approach fol-
lowed here. In order to behave successfully, a traditionally programmed robot would need to apply a
program of a complexity comparable to the complexity of the environment which is even in control-
lable environments (such as a robot soccer ground or an office environment) a difficult, but in general
a hopeless task. Further the designer of the robot will be tempted to overly exploit specificities of the
environment to optimize the robot with respect to a given task. We will instead focus on what is done
under a given paradigm and evaluate the behavior in order to find tasks for which it might be useful,
rather than to try to tailor the behavior regarding a specific task.

1.5 Living systems

What we expect situated autonomous agents to be able to do, has long been achieved by living beings.
We can therefore only gain when considering parallels of our approach known from the animal kingdom.
However, animals have not only adapted to meet the challenges of their respective environment, but have
also contributed to the very properties of these environments. For various reasons we should not assume
our agents to modify the environment for the purpose of their well-functioning unless specifically required
by the designer of the agent’s tasks. Yet, the agent is not opposed to an absolute world, but maintains
interactions with its surroundings that give rise to various relative world views, which indeed are subject
to optimization in order to allow for more efficient functioning of the agent. We do not want the agent,
say, to cut down any plants in the environment in order to be able to move faster and more reliably, but
instead to develop patterns of locomotion which are adapted to a given state of the environment. The
intelligent agent has control over its relations to the environment, but not over the environment.

1.6 Dynamical systems

Dynamical systems provide a general framework to describe change, development, evolution, relations,
and interactions. In continuous domains such as the physical world differential equations provide the
language that expresses these processes. When taking into account that controllers for agents are im-
plemented based on digital processors there is a discretization of time and state spaces imposed. Also,
sometimes, a discrete formulation of the problems under consideration is conceptually easier in an initial
phase of study. Still differential formulations do allow for the application of a highly developed apparatus
of analysis and thus for understanding of the relation the agent is engaged in with its environment.

Differential equations do actually describe space itself — by specifying the structure of space. Knowing
the structure of spaces allows to behave efficiently in these spaces including physical processes in the
environment, manifolds of behaviors, perceptions as well as internal representation of all of these.
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Conceptual framework

2.1 The model of an agent

In the formal sense an agent is an input-output system which at instances n = 0,1, 2, ... receives inputs
z, € I and produces an output which we call y,, € O where the input space I is our space of input values
and the output space O corresponds to the actions. In the most simple case the agent can be modeled
by a function

K: I—-0

y=K ()

In many cases however the action is not a function of the present sensor values alone but also of previous
ones and also of other influences. Whatever the conditions are, at each instant of time our agent embedded
into the world produces a pair (z,,yn). It is a well known result of system theory (early references are
Arbib, Kalman) that under very general conditions any sequence of pairs

E={(zn,yn) |n}=0,1,2,...

can be modeled by introducing a state system, i.e. assume the agent depends on a state vector z € Z
which is updated each time a new vector x of sensor value comes in so that the action the agent proposes
at time step n is

Yn K (%, 2n)
Znt1 = I(xp,zn)

This comprises the case that the output of the agent depends on previous values of the sensors since we
always may introduce part of the state variables to store the previous sensor values, examples below. For
the same reason we might also write the output as a function of the internal state alone, i.e. y, = K (z,)
since the latter may also include the present sensor values. We will however not use the latter notation
since in fact we will use the shorthand notation

Yn = K (l'n)

hiding the dependence of the agent on its internal state.
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2.2 The agent in the world

Up to now we have the sensor values received by the robot treated as being given. However, usually
the agent is interacting with the world so that the sensor values are influenced by its own actions. This
will lead us to an extended update rule by including the dynamics of the world. In the present section
we consider the generic example of a robot moving in an external world which may be either static or
dynamic (with moving objects or so). We assume for the moment that the agent receives sensor values
x € R™ at discrete instances of time which we number by n = 0,1,2,... as before. The agent outputs
an action

Yn = K (Tn, 2n) (2.1)
which in general will contribute to the change of the state of the world.

The physical state of the world is to be characterized completely by a vector ¢ € R™ and the change of
the state ¢ is put as

Gnt1 = qn + W (Qn: yn) (2-2)
where the sensor values as a function of the physical state of the system are
Tn =S (qn) (2.3)
S being the sensor characteristics,
and the internal state of the agent is updated as
Zn =1 (n_1,2n-1) (2.5)

Equation (2.2) together with eqs. (2.3), (2.4), and (2.5) formally describe the behavior of the agent in
the world.

We note in passing that in realistic cases the underlying assumption of deterministic update rules is not
justified so that the updates will be noisy as will be discussed later.

2.3 The principle of adaptivity

In practical applications the behavior of the agent should be dependent on a set of parameters ¢ € R?
so that the behavior can be adapted to the external conditions and/or the needs of the user. In the case
of the robot ¢ is a set of parameters for the controller. In particular, if the controller is realized by a
neural network, ¢ would contain the synaptic strengths and threshold values and the like of the neurons.
We write the model of the adaptive agent now as

Yn = K(anZnac)
Znt1 = I(xn;2n,c)

The parameters can be tuned by hand form outside until the desired behavior of the robot is achieved. In
an adaptive system the parameters are tuned by the agent itself according to some update rule given to
the agent by the designer. Usually there is an error function measuring the distance between the actual
behavior and the target one. Then the update rule for the parameters can be obtained by gradient
descent

Cn4+1 = Cp — naTE (Cﬂn; Cn)
n

on the error function E which depends on both the actual state x, € R™ and the controller parameters
¢n € RP. In principle we can explode our vector of internal states z to include the parameters ¢ so
that the learning dynamics can be included into the internal state dynamics. However, in the theory of
dynamical systems the dependence of the behavior on the parameters c is of central interest (bifurcation
theory) so that we will not do this here. Adaptive agents will be considered in more detail below, in
particular in section ?7.
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2.4 Dynamical systems

All of us know dynamical systems as will be clear from considering the following program fragment

n=0;x=x0;

while (n<n_max) {
x += F(x);
n += 1;

}

where F'(x) is an arbitrary function given from outside.
This update rule changes iteratively in each cycle of the loop the value of the state variable z. Thus we
may consider x as a state variable which is a function of the discrete time n, i.e we write the loop as

Tnt1 = Tn + F (zy)

and we immediately see that the evolution equations for the state of our agent in the world is a dynamical
system in the sense introduced here.

2.4.1 Time-discrete dynamical systems as iterated maps

Mathematically the above iterative update rule is an iterated map. A function
G: R"—>R"

maps ¢ € R™ to a new value G (z) € R". Writing = + F (x) = G (x) we see that the value x,, is obtained
as the n—fold application of the map G to itself

Tn=G(G(...G(z)...))

Of course for many time steps the result will be very complicated in general.

The flavor of the theory of dynamical systems is that one can in many cases give systematic rules for the
behavior of the state z under these iterated mappings. This is of course of interest for the many dynamical
systems which describe the behavior of systems in nature, techniques or economy. On the other hand
the computer scientist may also benefit from this theory in that it gives him a better understanding of
what may happen in loops of the above kind.

Examples

We also know that such systems can have quite different behavior and we will give a few prototypes.

The most simple ones are the linear type where the update F' (x) is just a constant, i.e. F (z) = a for all
x so that
Tp = X +an

Others are of the exponential type where the update is proportional to the state z itself, i.e. F'(z) = gz,
ie.
Tpt1 = Ty + 9T
so that
and so on.

Most of us probably also know that depending on the nature of the function F' the behavior may be
very complicated. An extreme example of the dynamical complexity engendered by simple dynamical
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systems is given by the pseudo random number generators used in the computer. In many cases these
are based on the iterated mapping defined by a convenient function. Examples are

ZTpt1 = (az, + ¢) modm (2.6)

where z9,a,c € N, zo being the starting value, and 0 < zg,a,c < m. Typical values are m = 232,
a = 1664525, and ¢ = 1013904223. For n = 0,1,2,... the dynamical system generates pseudo random
numbers which are more or less identically distributed in the interval [0,m — 1]. These numbers are not
truly random since after a (very long) time they repeat periodically.

The pseudo random dynamics generated by the dynamical system of equation 2.6 is not so very surprising
in view of the properties of the mod-Operation on very large numbers. However we get a very complex,
as we will find chaotic, behavior also from extremely simple mapping functions. A well known case is
the so called logistic map so that

Tpi1 = oy (T, — 1)

For certain values of the parameter a the dynamics is known to be chaotic.

2.5 Time continuous dynamical systems

In many applications the update in any instant of time is only very small and it is only the number of
iterations which lead to large changes in the state of the system. This can be accounted for in the above
formulation by using F' as the rate of change of the state, i. we introduce the true (physical) time lag 6
and write

T4 = Tt +0F (CUt)

instead of equation ??, where ¢t = nf is the physical time. The advantage is that the rate of change F' is
more or less independent of the length of the time lag.

As a consequence we may consider time steps of width 6 rather than of unity and take the limit 8 — 0,
i.e. we consider

Tty — Tt
*T = F (z) (2.7)

and write z (t) for z as a function of the continuous time variable ¢. Writing

d .
T (t) =z (t)

for the time derivative we obtain
z=F(x) (2.8)

which is a differential equation. If we have more than one dimension, i.e. z € R®" and FF': R"™ — R"
we understand equation (2.8) as a system of differential equations, i.e. we write

1 = Fi(z1,...,20)
(2.9)

Ty, = Fn(xla"'axn)

where x = (z1,...,2z,) and F = (Fy,..., F,), each F; being an n—point function ( n—stellige Funktion).

The formulation of eq. (2.9) includes also higher order differential equations, cf. section 3.2 and thus
many classical physical systems. Our aim however is not to investigate specific physical systems but
instead to understand the characteristic properties of certain classes of dynamical systems. Our specific
aim in this context is to describe the behavior of autonomous agents in the world in terms of the language
of dynamical systems.
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2.6 Perspectives

These few examples seem to show that the behavior is very diverse and it is not clear what kind of
rules are to be expected. In order to give some hints we mention for instance the universality of scaling
laws in chaotic systems, the understanding of phase transitions, the emergence of new modes (behaviors)
due to spontaneous symmetry breaking driven by the noise, the slaving principle of the theory of self-
organization, the qualitative rules for the classification of systems (Morse-Conley) and so on. Moreover
there is also a lot of simple models displaying new dynamic phenomena like self-organized criticality.

So what the theory of dynamic systems and above all the chaos theory has given us is a set of tools for
understanding and dealing with these new phenomena, in particular

e classification of system behaviors

e analytical understanding

e approaches to dynamic complexity
Autonomous agents as complex beings, their evolution, and dynamics of ensembles of agents seem to
belong to this class of dynamic complexity so that it is these tools which can help us in understanding

the complex world of biological agents and also help us in designing the principles for artificial agents
which are of the same dynamic complexity as the biological ones.
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Linear differential equations

3.1 Phase portraits

Consider the one-dimensional differential equation

i = f(x) (3.1)

at any point x where f(z) > 0 the function z(¢) will tend to increase.

f(x)

x

C B A B

Figure 3.1: Phase portrait. To each state x the one-dimensional system (3.1) uniquely assigns a rate
of change . If £ = f(z) is larger than zero then z experiences an increase, if & < 0 then z is bound
to decrease. For # = 0, x remains constant: The system is said to have a fixed point. If at both sides
of a fixed point x tends towards this fixed point, the fixed point is stable (B), otherwise it is unstable
(B). The arrows on the x axis indicate the flow of the system. Fixed points may also be neither fully
stable nor unstable, cf. the case of the a turning point (C) an the left. Further it becomes obvious that
one-dimensional systems on a line cannot have cycles: To each point z there is only one value of &z,
therefore the state x cannot go up once and go down at a later time.

Zeros of f(x) are of particular interest. They are called fixed points, because at values x with f(z) =0
the function z(¢) will not change in time. (A) If left of the zero x tends to increase and right = tends
to decrease, then this points is in a sense attractive to the time course of the function z(t), if (B) the
situation is vice versa, the point seems to repel the future z-values. Thus, starting near an repulsive
fixed point, the function will tend towards the next attractive (or stable) fixed point.

It is also obvious that no cyclic behavior is possible in one-dimension. Each value of z leads to a well-
defined (when the restrictions given in the next section are satisfied) behavior, and may not be different
when xz(t) passes this place another time.

3.2 Systems of differential equations

If a higher order (here: second order) differential equation can be written as

10
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#(t) = F(,i,1)

then by introducing a derived auxiliary function y, we can consider instead

T = Y
y F(z,y,t)
In particular, in the case of an additive function F, i.e. if F(z,y,t) = Fi(z(t)) + Fa(y(t)), we have

T = y
y = Kh)+ ()

such that is usually suffices to consider systems of first-order differential equations. We will restrict
ourselves to these cases.

Using an n dimensional vector z we write
= F(x)

Considered as a function of time ¢ and of the initial condition z(0) = o the right hand side F' is called
the flow of an autonomous differential equation.

Before we consider more general equations we will take a look on linear ones, here one can write (F; and
F5 are now constant coefficients):

<y>:<F?) Ff?w):(FOl ;><§>

3.3 Linear systems

The equation
z(t) = Az(t), z(t) € R, U € [1,00) (3.2)

describes (for fixed A) a set of functions, which can be parameterized by specifying initial values z(0) = x.
To find out what functions satisfy (3.2), we divide 3.2 by z(¢) (assuming z(¢) # 0) and integrate over ¢

S dx(t) () s
1 _ ar _
/0 x(t) o dt /0 . )\/0 dt

log (2(s)) — log (¢(0)) = As

and find
or
z(s) = z(0) exp (As) (3.3)

i.e. in dependence on whether A is greater or less than zero the magnitude of the initial value will rise or
decay. The solution (3.3) suggests a similar approach for the corresponding multidimensional equation:

z(t) = Az(t) (3.4)
where now z(t) = (z1(t),...,zn(t)) and A is a real (n x n) —matrix. The ansatz

z(t) = exp (A\t) y (3.5)
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reduces (3.4) to an eigenvalue problem: Namely, inserting (3.5) into 3.4 and dividing by exp (At) leads
to
Ay = Ay
or
(A=X)y=0.

If X is not an eigenvalue of A then all components of the vector y must be zero, and, hence, z(t) will
be identical zero (which is always a solution of (3.4) ). Otherwise, for each eigenvalue \i, k < n, the
corresponding eigenvector yj, determines via 3.5 a solution of 3.4, a.k.a. fundamental solutions. Are other
solutions possible? Consider to solutions z(!)(t) and z(?)(¢) then also az™®(t) + Bz(?)(t) is a solution
of (3.4), which becomes obvious when inserting z(t) = az™)(t) + Bz(®(t) into (3.4). This simple fact
is known as the superposition principle, which turns out to be of great use, although it is essentially
restricted to linear equations. (Remains the question whether all solutions of the linear system are given
by superpositions of the fundamental solutions. But this is actually no problem, because there cannot
be more than n independent solutions, which have been obtained already, and any other solution is thus
already included.

3.3.1 Strogatz’ love affairs

Strogatz (1994) considers the wide variability in the course of love affairs as an interesting field of
application of the theory of dynamical systems. After having defined the functions

R(t) : Romeo's love/hate for Juliet at time ¢
J(t) : Juliet's love/hate for Romeo at time ¢

and accepted that these functions obey differential equations as these ones

1%_2 = aR+bJ
J cR+dJ

all kinds of love affairs are theoretically treatable.

As an example, consider the case, where Romeo is clearly excited by the love he experiences from Juliet,
whereas Juliet on the other hand, is more busy with her own feeling and reacts disapproving to the
advances of Romeo:

R
J = J-—R

If the two never noticed each other, i.e. if R = 0 and J = 0 initially, this will never change from itself.
But assume either of the two lovers has had a spontaneous empathy to the other one, be it love at
first sight, be it a sudden emotional flicker. If it is Romeo who started to show some affection (while
J =0), J will decrease and stay zero. But there is hope: As soon as Romeo senses the aversion of Juliet,
he will treat her badly as well. This macho behavior is what Juliet likes about Romeo. If it becomes
sufficiently strong, it compensates her own negative feelings, and turns her on. It is visible that there
will be a never ending change of their attitude towards each other and that the various emotions become
stronger and stronger as time passes. Clearly, this is not a boring relationship, although only during one
quarter of the time they will experience mutual love. In real life, there will occur some exhaustion when
the emotional waves are too strong for an extended period, also one may guess that the romantic style,
i.e. the parameters of the system may change in the process of the relationship. What remains from the
example is perhaps nothing but a nice example of the “unstable spiral” behavior, just one case in the
classification of linear dynamical systems, cf. section 3.4.

With regards to her “romantic style”, each lover comes in four variants

EXAMPLE
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e a,b> 0: eager beaver
e a,b < 0: misanthrope
e a <0, b>0: cautious lover

e a >0, b <0: tragic romantic

In the example above Juliet is clearly a tragic romantic, whereas Romeo is something in between an
eager beaver and an cautious lover, not really the macho Juliet is being fond of.

But also the absolute values of a and b are of importance. Namely, when a? > b2 the relationship fizzles
out to mutual indifference. In contrast, if a> < b2, the feelings will eventually be mutual, however, not
necessarily as indented initially. We will explain (cf. section 3.4.1) why we can expect this behavior and
have a look at a few more examples when we have presented the qualitative theory of linear systems in
the following section 3.4.

3.4 Qualitative analysis

The individual solutions of (3.4) are determined by n dimensional vectors of initial values, but we are
interested in properties that are common to all solutions for a given matrix A. It will turn out, that
important statements can be made (for linear systems) solely based on the eigenvalues of A. Consider,
to keep things easy, the case n = 2. The two eigenvalues \; and Ay of A are given as solutions of

(R &) (o v))(m)=(0)

1 1
A2 = 5 (A1 +Az) £ 5\/(/\11 + A22)2 —4 (A1 A2 — A1aAg).

or

A1 and A2 are either both real or complex conjugate, and not necessarily different. Table 3.1 list the
various possibilities for the two eigenvalues of the system’s matrix. W.l.o.g we assume the real part of
A1 larger than that of Ay. The corresponding behaviors can be found in figure 3.2.

eigenvalues eigenspace type of fixed point
A, Adoreal | A <0, A2 <0 2d stable node
Al =X <0 1d stable improper (Jordan) node
A1 >0,A>0 2d unstable node
AL=X>0 1d unstable improper (Jordan) node
A >0,2<0 2d saddle (hyperbolic)
A =X <0 2d stable star
A =X>0 2d unstable star
A1 =0,2<0 1d line of stable fixed points
A1 >0,2=0 1d line of unstable fixed points
A=\ A1+ <0 2d stable spiral
AL+ A >0 2d unstable spiral
A+ =0 2d elliptic fixed point (center)
A=A =0 0d superstable or nilpotent fixed point

Table 3.1: Table of flow structures in two dimensional linear systems.
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Figure 3.2: FEzxzamples of flow structures in two dimensional linear systems and sample trajectories as
well as typical coefficient matrices.

3.4.1 More on love affairs

Strogatz (cf. [9, 10]) asks his readers to take a look on a few more examples on what may happen in the
realm of love affairs. Suppose Romeo and Juliet react to each other, but not to themselves: R = aJ,
J = bR. What happens? Let us write the system in matrix form:

(MYy=(0 o) (%)

b 8 ) are given by A,/ = £v/ab. If a and b have the same sign, there are two real
eigenvalues, one positive and one negative: The qualitative behavior is that of a saddle, i.e. the state of
the affair is bound to diverge: If a and b are both positive, Romeo and Juliet will end up in excessive bliss
or in deadly mutual hatred. What actually will happen depends on what feeling was initially stronger.

The lesson to be learned is: try a little love.

The eigenvalues of < 0

If a and b have opposite signs the feelings will remain opposite if they are in the beginning, or if both
had initially the same attitude, the one with the stronger attitude will force the other one to change the

feeling.

Do opposites attract? The system R = aR + b.J, J = —bR — a.J has the eigenvalues Az = £V b2,
i.e. purely imaginary ones. The behavior of the system is that of a center: The total amount of emotion
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is conserved (R? + J? = const) but the emotions vary cyclically. A stable and continuously “interesting”
affair.

If Romeo and Juliet are romantic clones (R = aR+bJ, J = bR+ aJ) should they expect boredom or bliss?
Now, this depends. It depends actually on the magnitudes of a and b, namely, as mentioned above, on
whether a? < b? or not. This is seen from the eigenvalues of the system in question: A2 = atva? —b?,
i.e. the sign of a> — b determines whether we have complex or real eigenvalues. Further the sign of a
determines stability, because for a2 —b? > 0 the root cannot override the sign of a. But also for a>—b? < 0
the stability is determined only by a. Since the root yields only the imaginary part, a < 0 is sufficient
for stability.

Finally consider “Romeo the robot”: Nothing could ever change the way Romeo feels about Juliet: R=0,
J = aR+ bJ Does Juliet end up loving him or hating him? R is constant for all times, but its sign gives
a bias (that might be inverted for a < 0) to the emotional state of Juliet. We may consider instead of
J = aR+bJ the equation J = b (J — ¢&) = b.J. Note that J = J, i.e. we can directly infer the behavior
of J from J. Thus if b < 0 then J tends to zero and .J tends to % which can be either positive or
negative. If b > 0 then J explodes to the same side which is .J initially relative to %.

After having solved all the love issues we will turn back to a set of mathematical problems which require
as much care as the ones connected with love.

3.5 Remarks

3.5.1 First integrals for nodes and saddles

In many cases, e.g. for saddles or proper nodes, we can rotate the system to two independent equations,
(cf. sect. 3.5.2):

T = )\11‘
y o= Xy
if both eigenvalues have the same sign (A1 - A2 > 0, node) than it holds that

)" (3)"

If they are of opposite sign (saddle), analogously

)"

Equations (3.7) and (3.8) can be viewed as conservation laws a.k.a. first integrals. The dynamics of
the respective linear system is thus that (3.7) or (3.8), resp., is satisfied. If the system is not already
in the form (3.6) slightly more complex relations hold. Let’s briefly summarize how a given systems is
transferred to the form(3.6).

, (3.6)

3.5.2 Coordinate transformations

1), _ A11 A12 u

v - A21 A22 v ’
We assume that the matrix A is diagonalizable which is equivalent to the existence of n independent
eigenvalue. Note however that this condition is not satisfied in all of the cases listed in table 3.1.

Consider the system
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Diagonalizability means that there is a matrix R that transforms the matrix A to diagonal form in the

following way:
A0
-1 1
mari= ()

The variables of the diagonal system (e.g. (3.7) and (3.8)) are obtained by

(v)==(7)

Y v

If A is symmetric, the matrix R is easily constructed once the eigenvectors of A are known. R contains
the eigenvector as rows. For more on diagonalizations cf. any standard linear algebra book.

3.5.3 Spirals in polar coordinates

A typical Spiral iS present in the SyStem
y y —W a y

The eigenvalues of A are obtained from (a — )\)2 +w? =0, ie. Ai/2 = a £ w. In order to see that there
are actually spiraling solutions to this system, we introduce polar coordinates by

po= VaPty?

§ = tan~' (5)

The system (3.9) is expressed in terms of p and 6 by calculating the derivatives of p and 6.

po= (@i +yy)
0 = o5 (zy—yi)
inserting & = ax + wy and ¥ = ay — wz we find
po= 5la(@+y?)
0 = 5 (-w(e®+17))
or )
p ap
: 1
f iy (3.10)

The later form of the system (3.9) shows easily that the angular coordinate moves with constant speed,
where the orientation of the spiral is dependent on the sign of w. From the second equation we find
# = wt such that we have the relation

p = po €xp (%9)

The distance from the origin increases (or decreases) exponentially if & > 0 (a < 0), because for ¢ > 0
the signs of # and w cancel.
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3.5.4 Time inversion

What about ¢ < 0 in the previous example? Then we would have obtained for the initial value problem
a solution in terms of ¢ — ¢p, which is positive. On the other hand we can (formally) allow the time
to run in opposite direction. This results in an reversion of the stability properties as well. Under the
transformation ¢ — —t, i.e. when solving a differential equation from some starting value backwards in
time, stable fixed points turn into unstable ones and vice versa. Time inversion, although practically
meaningless, becomes thus a powerful tool for the analysis of dynamical systems. A problem is that
unstable behavior rarely occurs and unstable fixed points are rarely ever visited by the system. If one
wants to get information about the unstable points, manifold etc., one consider the stable points in the
time-reversed system, which are essentially identical to their unstable counterparts one is interested in.

3.5.5 Center

Consider (3.9) in the case a =0 :

<§>:A<§>:<—Owg><§> (3.11)

Now, (3.10) simplified to

(3.12)

f = —w’
i.e. the radius does not shrink or expand. Solutions from circles (or ellipses) in the phase plane. If the
initial amplitude is at a value po the system will remain at p(t) = po for all times. A corresponding
physical system is a low-amplitude pendulum without friction or damping.

How ever weak influences such as by noise or small nonlinearities which have been considered to be irrel-
evant in the formulation of (3.11) may gain importance here, because at least in the radial direction the
system shows no dominant dynamics. We will continue here later, when dealing with small nonlinearities.

3.5.6 Higher dimensions

For higher dimensional there are of course more combination possible. Generally, there are proper nodes
and spirals, and a lot of degenerated cases. Later, however, when instead of linear systems linearizations
of general systems are considered, we will see that the degeneracies are not merely a reduction to the
lower dimensional cases, but may reveal new structure which is brought about by the nonlinearity of the
system.

3.6 Light-seeking robot

We consider as a first and rather trivial example a robot in front of a light source. The robot faces the
light source under an angle ¢ and is able to turn, i.e. to change this angle ¢. The robot has one sensor
which output a value z as a function of the angle ¢

z=b()
Our task is to equip the robot with a controller which turns the robot so that x = max.

Let (to simplify the problem)
x = cos (¢)
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The controller output affects the angle ¢ as follows

A¢ = Atay

The fact that the robot should turn to the direction of maximal light intensity is expressed by a cost
function which is to be optimized by the robot’s actions. Choosing E = cos ¢, we have posed the task
to the robot to maximize the light intensity w.r.t. y. It turns out, however, that E does not directly
depend on y. Only when considering the difference

E(t — At) — E(t) = cos(¢ + Ap) — cos (@)

the y—dependency becomes visible and can be used to change y such that F is further increased:

0 0 .
Ay = B_yE = a—ycos(¢+Atay) = At asin (¢ + At ay)

This procedure, called gradient ascent (or analogously: gradient descent if the task is to minimize E),
establishes a convenient and simple way of parameter adaptation (or if you like: learning) and will
reoccur later more often.

Taking the limit At — 0 we find

¥ = asin(e).

We can for small deviations from the light source (which is assumed here to be visible at an angle ¢ = 0)
linearize the sin function and obtain the following linearized system

y\_(0 «a y

o) \a 0 )
The eigenvalues are Ay, = *ai, which means that the behavior is always oscillatory. What can be
done in order to have an actual stabilization towards the point of maximal light intensity? Actually,
the present algorithm does not distinguish between the point of maximal and the point of minimal light

intensity. Also this should be taken into account: the point of maximal intensity should be a stable fixed
point, whereas the point of minimal intensity should be unstable.

Of course we should have asked how ¥ is actually to be controlled from the information accessible by the
robot rather than expressing in term of the objective coordinates, which are not directly available to the
robot.

What went wrong in the above example? We wanted to stabilize the fixed point at ¢ = 0 but obtained
merely a center around the fixed point.

We have used (unlike in the computer program controlling a robot for this task) a few differential
relations. Differential relations refer to two infinitely (or at least nearby) points, say, in time. What
happened is that in this way we have failed to take into account causality o the events: The control
action cannot be based on later measurements x or ¢ cannot react to later control actions y.

Let’s be a bit more careful now. We indicate the direction of causality by arrows and shall use the
relations only in the causal temporal order. When introducing a wrong causality by some relation we
can indeed obtain any stability behavior. Wrong causality means time inversion, which as we have seen,
changes stability properties.

We want the objective dynamics, i.e. that of ¢, to have a stable fixed at ¢ = 0(+2k7) and unstable
one elsewhere, in order to approach ¢ = 0 directly it should be located at ¢ = 7 (+2kwx). This means, ¢
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should cross zero decreasing at 0 and increasing at 7. Similar to the error function in the previous trail
approach, we choose ¢ = — sin ¢, which is qualitatively the same as maximizing cos ¢, but now the error
function is not really accessible to the robot because is based on non-measurable quantities.

é=ay
1
y=——sing
(0%

Y= —lcosqﬁd) = —1C05¢(ay)
a «

(6)=07% 5)(2)

This system is stable near the fixed point Z* = ( 8 ), although one observes that the system is
stable for any ¢ if only y = 0 : Trivially, if the robot does not move, the system is at a fixed point. It is
thus interesting to note, that for

and unstable near ¢ = 7.

If we however reformulated the system such that it contains closed expressions in terms of the information
available to the robot

T = cos ¢
y=—xy (3.13)
&= —sing¢ = —y> (3.14)

we find for the linearized system with f(y,z) = —zy, and g(y,z) = —y*

(D-(E8)()-(2 3)00)

Thus, near the fixed point < z* > = < (1) ) approximately holds

()= 9)(2)

This is the nilpotent case of he classification. It presents a non-trivial dynamics with two zero eigenvalues.
The phase plane contains a line of fixed points, i.e. any y is OK if only x = z*, if, however, = deviated
from x* then y is changed. Since, however, x* is the maximal possible value for z, we always have
x — z* > 0 such that § < 0 and y decreases. The nonlinear system (3.13), (3.14) than takes care of
the correct control. Here, although having identified a theoretically interesting special case of a linear
system, the limited information available to the robot does not allow for a linearization, but must take
into account the full non-linear system. The mechanism is simply, that if = is at the fixed point one
cannot know from a single short deviation the robot cannot guess to which side (in terms of ¢) it actually
went.
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3.7 Stability

Stability will be the subject of the beginning of the next section. Here we merely give some simplified
definitions.

Lyapunov stability means that trajectories that are close together will stay close together. Asymptotic
stability implies that nearby trajectories will become arbitrarily close for sufficiently long times. Both
notions are clearly different. It may happen, that close trajectories stay close be never approach, such
as near an elliptic fix points. On the other hand (Consider the system ¢ = 1 — cos(¢), where a starting
value slightly above zero will run for a full circle before settling to the (one-sided) stable fixed point at
¢ = 0.) asymptotic stability does not imply Lyapunov stability. If both conditions a fulfilled we will call
a fixed point stable and if neither is satisfied, we will call it unstable.

There is also the notion of orbital stability, which is a weaker formulation of Lyapunov stability. Here
trajectories stay close although individual points may deviate as time passes. E.g. two planets may follow
nearby orbits while having different orbital speeds.

Later another aspect of stability, namely with regards to changes in the parameters is discussed. The
notions of stability mentioned above relate to dynamical stability, whereas when stability with respect
to the parameters is considered we speak of structural stability.



Chapter 4

Nonlinear systems

4.1 Linearization

4.1.1 Stability analysis in the one dimensional case

Let z* be a fixed point of the one dimensional system & = f(x). We perturb the system by a small-
amplitude function n(t) = x(t) — x*. The perturbation happens actually at ¢ = 0 and we are interested
in the fate of the deviation n(t) for t > 0. We consider the derivative

i(0) = 4 ((t) ~ 2°) = & = f () = f(a" +n) (4.1)

Since 7 is small we can Taylor-expand the r.h.s. of the previous equation (4.1):

f@* +n)=f@)+nf (z)+0 (n°)

f' denotes the derivative of f with respect to z, and the symbol O tell something about the error we
have made by omitting the remaining terms of the Taylor expansion, here the error is at most of the
order of 2 which is very small if 5 is already small. From (4.1) we have thus

n=f(z")n. (4.2)
Note that we can neglect the O (5*) terms only if we are close to z* and if f'(z*) is nonzero (otherwise
the evolution of 7) is determined by the higher-order terms). (4.2) is (since f' (z*) is a constant) actually
a linear differential equation. Obviously, if f' (z*) < 0 the initial deviation n(0) decays to zero for ¢ — oo,
whereas for f' (z*) > 0 the perturbation grows exponentially, i.e. the fixed point z* is unstable in the
latter case (and stable in the former case). We see that it made sense to exclude the case f'(z*) =0,
because here we would expect from the linear system that the perturbation would remain unchanged
by the dynamics. Whereas for f'(z*) # 0 the exponential behavior dominates the higher-order terms,
for f' (z*) = 0 the higher-order terms will determine the dynamics. We will present several interesting
examples later when we are dealing with center manifolds.

4.1.2 Stability analysis for dimensions larger than one

Assume that the system
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has a fixed point at (z*,y*), i.e. f(z*,y*) =0 and g (z*,y*) = 0. As in the previous example we study
the problem in terms of deviations from the fixed point © = z — z* and v = y — y*. Consider at first v :

U =
= f@" +u,y" +v)
~ ooy 4 2f L0
~ f(a:,y)+uax+vay
of = 0Of
U%-F’Ua—y

where we have omitted terms quadratic in v and v (cf. previous section) and have used that f (z*,y*) = 0.
Analogously, we find

or, taken together,

()-(E )

of  of
The matrix ‘g; gg is called Jacobian matrix and is the multi dimensional analog of f'. Since (4.3)

ox oy
is a linear differential equation we can exploit the relations we have derived in the section about linear

systems (Sect. 3.3) and have found now a possibility to carry over the analytic tools from the linear case
to the nonlinear case, however, only in a local sense, i.e. in the vicinity of a fixed point.

4.2 The moving one-eyed robot

Let us consider first a simple two-wheel robot which is assumed to have but one sensor which measures
the distance to the closest obstacle. In physical space the state of the robot is defined by the two
coordinates

1. a = distance to the obstacle and

2. ¢ = angle between the direction of the forward motion of the robot and the connecting line between
the robot and the obstacle.

The robot is to be equipped with a controller which outputs the new turn velocity ¢ = %cﬁ of the robot
as a function of the distance a and the angle ¢. The forward velocity v is assumed to be fixed. The
dynamical system describing the motion of the robot in physical space is

a = wvsing
b = Ko 4

where
K (a,¢) = a='=— (4.5)

D being the distance between the wheels, v, and v; are the velocities of the right and left wheels,
respectively, and « is a hardware constant.
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Equation (4.4) describes the motion in physical space. The robot however receives information about the
world and hence about its state in physical space only by its sensors. This information can be incomplete
or unreliable or both. In the present model the sensor output

x = s(a)
is to be a function of the distance a alone so that the angle ¢ is a hidden variable.
In sensor space we obtain by means of
t=s(a)a=5"(s""(z))a=q(z)a

the equations of motion as (absorbing v into q)

& q(z)sing
¢ = K()

For a first analysis we note that the system has a fixed point ¢ = 0, z* where K (z*) = 0. Near ¢ = 0 we
can approximate the sin linearly: sing ~ ¢. Further we can assume the ¢(z) is more or less constant for
z ~ 0, i.e. g(r) = u. Finally, we assume a linear controller K (z) = kx or we approximate the controller
linearly. This linearization near the fixed point yields the dynamical system

T = u¢

qukw

(5)=(k5)(2)

The fixed points are obtained from the characteristic equation A;/, = +vku. We immediately see that
the system is unstable if ku > 0 and is oscillatory if ku < 0. Hence, with the information the robot
obtains from its sensor it never can move in a fixed distance to some wall but instead the best it can do
is to follow an oscillatory path at a distance given by the sensor value x*.

or

4.3 Two-eyed robot

Let us now assume that the robot has two sensors at one side of its body, the sensors measuring the
distance to the wall. Looking to the right, the sensor signals are z; (front) and z» (end) the distance
between the sensors being A. If the robot moves parallel to a wall we consequently have 21 = 5. The
controller which is to yield the target turn velocity of the robot as before may now depend on both sensor

values which on their hand depend on both y = < il ) and ¢.
2

g = vsin ¢
¢ = K(z1,22)

4.3.1 Dynamics in sensor space.

The above equations are formulated in terms of the distance y and angle ¢ of the robot relative to the
wall. These must be extracted from the primary sensor data in a preprocessing procedure. In order to
formulate the dynamics in terms of the primary sensor values x; and zs itself, we use a linear sensor
characteristics and absorb hardware constants into D and the time scale so that

R )
2
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Figure 4.1: Schematic drawing of a two-eyed robot. It senses walls or obstacles on its sides by sensors
in the front and in the back. We consider here only sensors on the right side of the robot. The sensor
readings are fed to the robot’s controller which determines the speed of the two wheels (or rather the
steering angle, cf. text).

and
. Ty — T2
_ 4.6
sin ¢ D (4.6)
In the case of small ¢ we may replace sin ¢ by ¢ and find
T, = vD™! (1‘1 — .’L‘Q) + QK (1‘1,1‘2) (4 7)
Ty = vD™! (1'1 — .’L‘Q) — gK (1'1,1'2) '

Depending on the controller we may observe all kinds of motions which are possible in a two dimensional
system. In particular we observe all attractor types to be discussed below.

In order to discuss the general case we introduce

Ty — T2

we find 2 = ¢/1 — 22 so that from (4.4)

y = vz

2 = V1-22K (y,z)

This equation describes the motion in sensor space in terms of the generalized sensor coordinates y and
z. It can easily be reformulated in terms of z; and x».

(4.8)

The root term may be eliminated by the following trick. We introduce an auxiliary variable u = cos ¢

so that & = —z. Then we have the dynamical system
U = —z
y = vz (4.9)
2 = uK(y,z)

However this equation is more general than equation (4.8). It boils down to the latter when observing
the initial condition
u (t()) = 1-— 2’2 (t())

Another form of writing equation (4.9) is obtained from eliminating z
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i
ij

_UK(ya —U)
vuK (y, —u)

(4.10)

The above equations define the dynamics of a robot encountering a wall for an arbitrary controller given
by K.

4.3.2 The linear control regime

For small z and using a linear controller we have

y o= vz

z = ay+pPz+y (4.11)
so that obviously for small deviations of the robot from the ideal line we have the dynamics
& =Hzx (4.12)
where x = (z1,z2) and the matrix H is chosen appropriately. Equation (4.11) is equivalent to
=Pz + avz (4.13)

which is the equation of the damped harmonic oscillator with friction term. If the friction constant 3 is
< 0 than we have a damping so that the robot now will move in a stable motion along the wall. This is
possible because there are no hidden variables in the present case.

Adding noise

Noise can appear in various forms in the dynamical system depending on the origin of the stochastic
influences. Measurement noise makes both y and z noisy which leads to an additive noise term in
eqs. (4.12), (4.13), e.g. Controller noise may influence the variables «, 3,7 and v which leads to a
multiplicative noise term in these equations.

4.4 A sample limit cycle
We consider a system in polar coordinates

ro o= r (1 — 7"2)
; 4.14
i - 1 (4.14)
Since # moves with constant speed independent of r, we can study the temporal evolution of r separately.
The one dimensional system

i=f(r)=r(1-r?)

has exactly two fixed points (well, there is another one at » = —1, but in polar coordinates r is restricted
to nonnegative values). Setting 7 = 0, we find 7§ = 0 and r5 = 1. The derivative of the right hand side is
df
i 2
r)=—=14+r—-3r
1=
such that

f1(r7) =land f' (r3) = -1,

EXAMPLE
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i.e. rf is an unstable fixed point and 73 is a stable one. Starting exactly at r(0) = r} the trajectory will
stay at r(t) = rf = 0. For any other value of r(0) the trajectory r(¢) will tend towards rj = 1, because
for > r3 there is a tendency for r to decrease, whereas r will increase for rj <r <rj3.

*

" > different from ( " ) will approach

For the system (4.14) this means that any the trajectory < p 0

rs
0
the equations explicitly, we have thus identified the qualitative behavior of the system (4.14).

the circle ) , 0 € R, i.e. the system (4.14) has a limit cycle with radius r;. Without having solved

4.5 The Poincare-Bendixon Theorem
Suppose the following conditions are satisfied

1. A domain @ is a closed and bounded subset of the two dimensional plane.
2. There is a open domain P D ) on which the function f is everywhere differentiable.
3. The system & = f(x) has no fixed point on Q.

4. There exists a trajectory z(t) (with & = f(z)) that once having entered @ it never leaves ) again.

Then there exist a closed orbit in Q.

Remark: We have already seen, that in one dimension there are no limit cycles. Now we find that in
two dimensions there are no more wild behaviors possible than limit cycles. Of course there are also
fixed points in two dimensions. Other dynamical behaviors, e.g. the nilpotent fix point line in the above
classification, may contain lines or curve consisting of fixed points, but apart from fixed points and limit
cycles nothing is to be expected.

The proof of the Poincare-Bendixon theorem is lengthy (cf. e.g. Alligood et al., 1997), and contains
in addition to the uniqueness property that we have referred to when showing that there are no cyclic
behaviors in one dimension, a trick that captures the trajectory iteratively within its own previous points.

In order to apply the theorem the first three conditions are mostly easy. If there are only finitely many
fixed points, one has to cut out a small open region around the fixed points to obtain a closed region
R. More difficult is the fourth condition: One may instead of looking for special trajectories consider
a so called “trapping region” to be used for the region R. One then has to make sure that at all the
boundaries trajectories can only enter R and can nowhere leave. If it can be proven that trajectories
exist for infinite times (cf., however, the counter example above), then condition 4 is satisfied.

4.6 Three dimensional systems

4.6.1 Two incommensurate frequencies form a torus

Consider the equation

i+cfr=0, €R (4.15)

of equivalently

v = —c°z



CHAPTER 4. NONLINEAR SYSTEMS 27

Inserting z(t) = asin(ct + b), shows that we have found a solution. Since the solution depends on two
parameters (which can be determined from the initial conditions) we can be sure that we found already
all solutions.

In the following examples we will assume that a = 1, b = 0, and ¢ = 2. The two-dimensional system
(4.15) is of center type with ellipses as solutions which are traveled through twice when ¢ runs through
[0, 27).

Figure 4.2: Typical trajectory of the unperturbed system (4.15). Horizontally = and vertically # is
represented. Corresponding to the periodic behavior of the system the trajectory is closed and is ran
through by the system twice every clock cycle.

Now we apply a second frequency to the system.

i+ c’r=(c? —1)sint (4.16)

Actually we are now considering a two-dimensional system with driving. The Poincare-Bendixon theorem
does not apply to such systems, because of the explicite time dependency. We can however express (4.16)
as an autonomous three-dimensional system.

T = v
v = —cr+(c2—1)sinf
0 = 1

where the explicite time dependency is covered by a third trivial equation. A typical solution (cf. figure
4.3) of (4.16) is

x(t) = sint + sin ct. (4.17)
Note, that the behavior of (4.16) for long times does not depend on the initial conditions. In order to
get right to the interesting solutions we choose the initial conditions such that the trajectory will must
not go through a transient behavior, namely x(0) = 3¢ 77?

Using (4.17) we find also

v(t) = cost + ccosct

Taking into account that
0(t) =t
we have the following picture, cf. figure 4.4 (left)

In the right picture (above), we have used the fact that 6 is actually a cyclic variable, that we have rather
plotted sin @ along the z-axis (unfortunately it is turned by 90°).

The closed orbit can be embedded into a torus, cf. figure 4.5.
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Figure 4.3: In this example the frequency of the external driving is half the natural frequency of the
unperturbed system. Both frequencies are superimposed forming thus a cycle of period two. In contrast
to the unperturbed system the amplitude of the system is now fixed, i.e. the system sooner or later
approaches a limit cycle, i.e. the trajectory displayed here.
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Figure 4.4: Embedding the trajectory of the periodically perturbed system as an autonomous system
into a three dimensional space. On the left time is an unbounded continuous variable, whereas on the
right the periodicity of the external drive is appropriately taken into account.

So far in the pictures only the case ¢ = 2 has been displayed. What happens at other values of ¢? Below
in figure 4.6 we illustrate the cases ¢ = 3, ¢ = 1.05, and ¢ = 3.05.

Interestingly, for rational ¢ = 2 the trajectory closes after ¢ cycles, and it winds pq times around the
torus. For irrational values of ¢, however, the trajectory never closes, and fills thus the whole torus. In
this case we speak of quasiperiodic behavior. Quasiperiodicity is different from chaotic behavior (to be
considered next) in that nearby trajectories will not depart from each other, i.e. quasiperiodic systems
are stable in the Lyapunov sense.

In nature related phenomena occur, if periodic behavior is disturbed periodically. A particle in the ring
of the planet Saturn has a natural frequency which is determined by its distance to the planet. The large
moon Titan (?) periodically attracts these particles with a different frequency. If the two frequencies
have a rational ratio, the particle’s trajectory is not stable as it takes up energy resonantly. For irrational
ratios energy uptake will average out and the trajectory is stable. If ¢ = % is rational, but p and q are

large, the particle will be able to stay for (even astronomically) long times on its orbit. At this scales
also the effect of other moons etc. cannot be neglected.
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Figure 4.5: The trajectory of the double-periodic system embedded in a torus. For other initial conditions
the trajectory is shifted around the torus. On the right a side view of the torus is given.

Figure 4.6: Trajectories with different period. Intrinsic frequencies for ¢ = 1.05 and ¢ = 3.05 close at,
resp., twenty and sixty cycles (only a part of the trajectory is presented in these cases).

4.7 Braitenberg vehicles

4.7.1 Vehicle 1

Vehicle 1 is equipped with a single sensor that increases (or decreases) the speed of the vehicle in
dependence of a certain stimulus. In order to obtain interesting behavior we have to assume that the
vehicle deviates randomly from its straight path. On a large length scale the vehicle can be described by
a random walk in a potential which is formed by the stimulus quantity. If z denotes a position and V (z)
is the value of the stimulus at this location, over large times the probability of the vehicle to be a certain
place will be high at low V and low at high V' (or vice versa for inhibitory sensor-motor coupling). This
can be made more explicitely.

4.7.2 Vehicle 2

Consider a vehicle with two light sensors the output of which is fed into the wheel motors. We study
in the present section the case that the left (right) sensor is connected to the right (left) wheel with
strength factor 1 + w (1 — w). Let (z,y) be the position of the center of the axis A of the robot and

cos ¢

1
[l

sin ¢
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Figure 4.7: Braitenberg vehicle near a light source. Either the solid lines, the dashed ones or both
a present in, resp., Braitenberg’s vehicles 2a, 2b, and 2c. Each vehicle exhibits a specific behavior in
relation to the light source.

be the unit vector pointing from A to the nose of the robot. The sensors are to be located along the the
axis at a distance —b/2 and b/2 to the left and right of A, respectively. The distance of A from light
source ¢ is
2 2
ri = (e —w:)" + (y— )
We put the intensity of the light source as a function of the distance as
a;
Ii = ——
or2 4+ R?

where R provides a cutoff of the intensity close to the light source. It may be interpreted as a kind of
radius of the source. The power supply received by the motors is (we put the source to the origin for the
moment )

lFw

(z+ %bsin¢)2 +(yF %bcosq&)2 + R?

jjl/r =

where the upper (lower) sign is for the left (right) motor, respectively.

We consider the case that the sensors are close together which means b << R. In leading order of b, the
forward velocity of the robot is

v = %(PZ‘FPT)

_ ulley) (4.18)

the difference velocity of the wheels is obtained as

u—v. = s -F)
= —2swl + 2sbQ)
where s is a hardware quantity and
—rsing +ycosd —xsin ¢ + y cos @

Q(z,y,¢) =« =1I(z,y)

(22 + R? + y2)° (#® + R? +y?)

If there are more than one sources both I and @ are simply the sum of the corresponding quantities.

The equations of motion of the robot are

T = sI(x,y)cos (o)
y = s I (z,y)sin (¢)

¢ = 2sI(z,y) (—w_H,W)
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Figure 4.8: Trajectories of Braitenberg vehicles. (a) z(0) = 0.2, b =1, w = 0.5 (b) z(0) = 2.2, b =1,
w=0.5 ()20 =22,b=1,w=09(d) z0)=22,b=0.1, w=0.9 (e) 2(0) =0.2,b=0.1, w =0.9
(f) z(0) = 0.2, b = 0.1, w = 0.5. Further variables: y (0) = 0.1, ¢ (0) = 0, R = 1.The behavior depends
on the value of the parameter w in an essential way. (but also on b)



Chapter 5

Bifurcation theory

5.1 Introduction

How do fixed points behave when the system changes? A dynamical system usually depends on a number
of parameters, such as the coefficients of the Jacobian matrix in a linearized system. Changes in these
parameters can induce changes of the number of fixed points, their stability, multiplicity or change the
properties of limit cycles, tori or chaotic attractors. Such parameter values are called bifurcation values.
Bifurcations denote thus the qualitative change of the dynamics of a system.

Bifurcations always involve changes in the signs of eigenvalues of the linearized dynamics caused by small
changes in the control parameters. Vice versa, dynamical systems are called topologically equivalent if
the numbers of eigenvalues of the linearization with positive and negative sign, resp., are the same (and
if the eigenspaces of purely imaginary eigenvalues are linearly equivalent).

For dynamical systems describing agents in an environment, bifurcations are particularly important
because they correspond to behavioral changes. The parameters of the dynamical system are thus the
key to the control of the agent. (Actually the parameters are often called control parameters even in
abstract theory of dynamical systems.)

5.2 General framework

The general dynamical system

z = f(x,c) (5.1)

is governed by a set of parameters (for simplicity we concentrate on the case of a single scalar parameter
¢). Qualitative changes in the behavior of the system in dependence of the parameter are revealed by the
effect of varying ¢ on the fixed points of the system. Near any parameter value cq;;y where the behavior
is expected to change, we expand the right hand side of 5.1 with respect to both z and ¢ at a fixed
point z*. If the resulting power series can be transformed to one of the forms discussed in the following
sections, the system is said to undergo a bifurcation.

of of

Tr = f (1: 7C(‘,rit) + (.’L' — T ) —aw — + (C — ccrit) 80 N (52)
o0 f . 0% f o f
«\2 Y J _ _ N Y] . 32
+ (z—2z%) o2, . + (a: T ) (¢ — Cerit) px0c| . .. + (¢ — Cerit) oz _— +.(5.3)

32
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The constant term obeys f (z*, cerit) = 0 because x* is a fixed point. The further terms in the expansions
determine the types of the fixed points of (5.1) in the vicinity of the critical parameter value cerig- By
a simple reparametrization we can achieve ceiy = 0 which will be assumed in the following. (5.3) now
becomes

& = (z—2a")fe(2",0)+cfe(z",0)
+ (x_m*)2fzz(m*70)+(l'_-r*)cfm(-r*ao)+C2f66(1'*70)+'-'

Whether or not the various derivatives of f are zero determines the type of the bifurcation point at ceit.
The following sections discuss the main cases.

Supercritical and subcritical

5.3 Saddle-node bifurcation

The system
t=c+a?

has fixed point at z* = £v/—c if ¢ < 0, cf. figure 5.1. In order to understand the configuration of the
fixed point of this and other systems we combine the flows, i.e. the vector fields along the z-axes in
figure 5.1, for different values of ¢ and arrive at a plot as in the left display of figure 5.2. Usually, the
fixed point configuration is displayed as a function of the parameter ¢, as presented on the right side of
figure 5.2, i.e. the axes are interchanged.

Figure 5.1: Parameter dependent fixed point configuration: Saddle-node bifurcation.

It is obvious from figure 5.1 and even more from figure 5.2 that an unstable fixed point and a stable one
collide and annihilate, leaving a system without fixed points. There are other situations, cf. 5.3, where
for increasing parameter the fixed points appear out of the blue or where the roles of the stable and the
unstable fixed point are interchanged.

Even if no fixed point is present, but ¢ is close to its critical value, the dynamical properties of the
system are still influenced by the neighborhood (in the direction of ¢ not in z !) of the fixed points:
The trajectory is slowed down for some time but gains speed later. The time spent near (w.r.t. z) the
close (w.r.t. ¢) fixed point scales as \/%7“ i.e. as soon as the fixed point is there, i.e. at ¢ = cepit, the

—Ceri

trajectory simply stops at z* forever.

The naming of this bifurcation type is derived from the two-dimensional case: there instead of an unstable
and a stable fixed point a stable node and a saddle collide along the unstable manifold of the saddle,
cf. below in sect. 5.6.1.



CHAPTER 5. BIFURCATION THEORY

—
—
—
—
—

c

—_—

—_—
—_—
—_—
_—

34

— . c
== —= ¥
e N
- =\ e
—
—

- =

Figure 5.2: From fixed point configurations to standard bifurcation diagrams: horizontal lines in the left
picture correspond to the z-axes in figure 5.1. The subfigure on the right is simply a representation of
the right one with interchanged axes.
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Figure 5.3: Saddle-node bifurcation.

5.4 Transcritical bifurcation

For transcritical bifurcation to occur in a dynamical system the first non-zero terms in the normal form
are of second order in = and there is a mixed term. The normal form reads

& =cx— 12,
i.e. ¥ = 0 is a fixed point for any ¢, and there is a fixed point at x* = c¢. Thus, if ¢ is negative, the
second fixed point is unstable, but it becomes stable as soon as ¢ crosses zero. It appears as if the fixed
points change their roles when ¢ changes sign, cf. figure 5.4.

5.5 Pitchfork bifurcation

5.5.1 Standard case

The normal form of a pitchfork bifurcation is characterized by the absence of linear terms and of quadratic
terms in z and any higher order term in the bifurcation parameter ¢. Thus only the mixed term and a
cubic term is relevant.

& =cx—a°
When c traverses zero from below the single stable fixed point at £ = 0 becomes unstable while two new
stable fixed points appear at the non-trivial roots z* = £+/c of the equation 0 = z(c — z*) . The situation
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Figure 5.4: Transcritical bifurcation.

can be described such that although the system is no longer stable at ¢ > 0 in the linear sense the non-
linear terms induce stability to the system. The new fixed points are affected by the non-linearity and
a moving away from zero if the relative strength of the non-linearity increases. Actually, for larger ¢ the
linear instability of the system becomes stronger such that only at larger = the stabilizing non-linearity
can compensate the linear instability.
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Figure 5.5: Pitchfork bifurcation.

5.5.2 Subcritical pitchfork bifurcation

Subcritical is the pitchfork bifurcation occurring in the system

i =cz+z°

An interesting case arises if also higher powers are of importance such as in the system (cf. figure 5.6)

i=cr+a*—2° (5.4)

In addition to the fixed point at zero, which is stable for ¢ < 0, further fixed points are found from
0=c+2z?>—2* Weset z =22 and find 213 = %ﬂ: ,/i +c. Thus, for 0 > ¢ > ¢; = —%there are five
fixed points, two of which are unstable. The transition from a single fixed point two the five-fixed-point
configuration happens via two saddle-node bifurcations at xz, = :I:% and ¢ = ¢s. At ¢ = 0 the two

unstable fixed points merge as a subcritical pitchfork into an unstable fixed point, while the outer stable
fixed points remain.
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Figure 5.6: Subcritical pitchfork bifurcation embedded into a fixed point configuration of a system
involving effects to fifth power. The faint grey arrows indicate the hysteretic behavior of the stable fixed
points of  when ¢ is moving up and down. The fixed points are match those of (5.4) only qualitatively.

5.5.3 Imperfect bifurcation and catastrophes
&=h+cr—2° (5.5)

For h = 0 we have a supercritical pitchfork bifurcation, cf. fig. 5.5. How is the behavior changed when
h # 07 First, consider the images in figure 5.7. The fixed points of (5.5) can be determined graphically,
i.e. they can be identified qualitatively by the intersection of the graph of the r.h.s. of the homogeneous
system & = cx — 2> and the horizontal lines at —h. The left image represents the case of negative ¢, here
only a single fixed point exists. For ¢ > 0 three fixed points are present if |h| < |h¢| . hc is defined for ¢ > 0

and is equal to the value of f(z) at the local maximum at Zyax = \/g hence he = CTmax — 25, = % %

max
he and —h, as functions of ¢ are displayed in figure 5.9. The dependence of the fixed point configuration
for fixed h > 0 on ¢ is depicted by figure 5.8. Finally, the surface in figure 5.9 represents the dependence
of the fixed point configuration of (5.5) on both parameters ¢ and h. It is visible that for sufficiently large
¢ hysteretic behavior occurs when h changes. Namely, if h increases starting from a small value a pair
of a stable fixed point and an unstable one annihilates such that z jumps to the upper part of the sheet.
When h decreases the state z will stay for some time at the upper region, but will jump down later. At
fixed ¢ > ceiy Wwe may thus observe large effects from small changes of the parameter h. Actually, here
a combination of two saddle-node bifurcations is present, which is usually referred to as an elementary

catastrophe of cusp type.

5.5.4 Decision making in robots

The system
t=cr—az3+h

can be used by robot to decide, e.g., whether it should pass an obstacle left or right. Here z is the
steering angle, ¢ is proportional to the inverse distance to the obstacle, and by —h the deviation of the
obstacle from the center is expressed. When the robot approaches the obstacle, ¢ increases more and
more and the dynamics becomes more and more biased to either side. If h is nonzero the direction of the
robot is steered to the opposite side. If h should remained close to 0 it does not matter anyway which
side the obstacle is to be passed: the central direction becomes so unstable that ultimately a decision is
taken due to some small fluctuation. Hopefully, this happens before the robot bumps into the obstacle.
(Steinhage et al.)
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Figure 5.7: Phase portrait of the system @ = f(z) = cx — 2% for ¢ < 0 (left) and ¢ > 0 (right). Fixed

points of the system & = h + cx — 2® are obtained by the intersection of the horizontal lines at negative
h value.

N

/ h

Figure 5.8: At fixed h, increasing ¢ leads from a single fixed point (left side of the previous figure) to
the occurrence of three fixed points as soon as |h| > |hmax| - Dashed lines represent instable fixed points.
Here we have h > 0. For h < 0 the picture is up-side-down.

5.6 Hopf bifurcation

5.6.1 Higher-dimensional systems

For the previous cases is has been sufficient to consider one-dimensional systems. For saddle-node and
transcritical bifurcations two fixed points collide, such that the situation can be described on the one
dimensional line connecting the two fixed points. The pitchfork bifurcation is in the vicinity of the critical
point symmetrical such that it can be treated in the same way.

Therefore these case carry over to higher dimensional systems without much complications. Naturally,
transitions among other attractor types are possible as well, e.g. a limit cycle may become a torus etc.
Some examples will be discussed in the following chapter. A simple and common type, namely the Hopf
bifurcation, is the transition of a fixed point into a limit cycle. Hopf bifurcations occur in systems of
dimension larger than one and are related to pitchfork bifurcation.

It may be good to come back to the saddle-node bifurcation introduced in section 5.3. Most important
applications involve a pair of fixed points on a circle, an unstable and a stable one. The circle itself is
stable, i.e. the unstable fixed point is actually a saddle point: along the circle states tend away from
this point, while across the circle states are attracted. If in the course of the bifurcation the fixed points
meet and annihilate, the circle becomes a stable limit cycle with a possible reduced speed near the region
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Figure 5.9: Elementary catastrophe: Cusp. The region of instable fixed points is shaded.

where the fixed points used to be. If the parameter can be controlled externally, the system can switch
between rotary motion along the limit cycle and waiting behavior near they stable fixed point. This type
of a dynamical system provides also a nice model for biological neurons: In the absence of input, the
neuron is near its resting state, i.e. near a stable fixed point, if the fixed points become closer the neural
state is likely to jump over the unstable fixed point and will follow the whole circle before it reaches the
stable fixed point again. The run along the circle is interpreted as the activity of the neuron, the neuron
sends a spike or is firing. If the fixed points are annihilated the neuron necessarily will fire a sequence of
spikes until the control parameter is set back to values the reintroduce the fixed points. Surely enough,
the saddle-node bifurcation can also be present, if the unstable manifold of the saddle does not connect
back to the stable node, i.e. if there is only a one-way connection between the fixed points.

\
AN é\\z

Figure 5.10: Saddle-node bifurcation on a stable cycle. The size of the arrows gives an impression (in
particular in the subfigure on the right) of the flow velocity which is low near the position where the
fixed points were located.

5.6.2 Standard case

The two dimensional system in polar coordinates
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cr —r

,,'.
0 = w

has a stable fixed point for ¢ < 0 at r = 0, whereas for ¢ > 0 is shows a limit cycle (cf. above). Formally,
the first equation # = cr — r3 represents the normal form of a pitchfork bifurcation, but the difference
is that r is restricted to positive values, such that only the upper branch of the pitchfork is relevant.
Together with the angular equation, which is easily solved by 6 = wt, the stable fixed point changes
above the critical point c.i¢ = 0 into an unstable one surrounded by a stable fixed point.

The situation become perhaps more transparent when displayed in Cartesian coordinates. Using & =
rcosf and y = rsinf we find

& = 7rcosf —rfsinf

(cr - r3) cosf —rwsinf

= (c—(@"+y"))z—wy
cr — wy

X

Analogously we obtain

Y = we + cy.

In order to find out about the fate of the fixed point of the system at ¢ < 0 it remains thus to determine
the eigenvalues of ( fj —Cw > . These are easily evaluated to Ay, = ¢+ iw. If ¢ passes zero the two
eigenvalues move from the half plane of negative real part to the positive one.

If # = er + 73 (cf. the center image in figure 5.11) the situation is vice versa: At ¢ = cqyp = 0 an
unstable limit cycle is shrunk to an unstable fixed point thereby annihilating a stable fixed point which
was present in the center of the limit cycle. Here we have an example of an subcritical bifurcation.
Considering the eigenvalues as above we find, however, that the two cases, the supercritical and the
subcritical one, cannot be distinguished: in both cases a pair of complex conjugate eigenvalues moves
from the left half-plane to the right half-plane, i.e. fixed point of spiral type changes from stability to
instability. The behavior of the limit cycle is simply not captured by the linear analysis.

There exists a formula (Guggenheimer and Holmes, 1983, pp. 152-165)

- 1

that allows to capture the nature of the Hopf bifurcation occurring in the system

& o= —wy+flzy)
vy = wzr+g(z,y)

The derivatives f,.. etc. are evaluated at the origin, where also the bifurcation point is located. Now, it
can be shown that if @ < 0 the bifurcation is supercritical, and it is subcritical for positive a. In practical
cases, however, it should be more convenient to decide the properties if this bifurcation numerically
rather than evaluating (5.6).
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Figure 5.11: Hopf bifurcation: supercritical, subcritical and degenerate.

5.6.3 Degenerate case

In some cases of a supercritical bifurcation the fixed point does not ed up in a limit cycle but in a
center. Whereas for the standard Hopf bifurcation the effect is only local (large r are attracted to an
initially small limit cycle, i.e. except for the small region within the cycle the origin is attractive), here
a transition beyond the critical point changes the behavior in the whole (r,6)-plane. A typical example
of the case would be

ro= cr’

g = w
Here in the vicinity of ¢ = 0 the derivative of r is essentially zero such that the behavior is of center
type, although for slightly larger ¢ > 0 the system will show unstable spirals.

As in subsection 5.5.3 also imperfections due to a constant term can occur for systems with a Hopf
bifurcation. Try out some computer experiments on such systems and check out the Lorenz equation
below.

5.6.4 Hopf bifurcation in a Braitenberg vehicle
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Figure 5.12: Hopf bifurcation in a Braitenberg vehicle. On the left the trajectory of the vehicle around
a light source at (0,0) is shown. For sufficiently high light intensities the circular motion changes into
a quasiperiodic one. On the left the return map of the distance from the light source is shown. If the
motion is circular the distance remains constant for fixed a, and increases slightly with increasing « until
a critical value acpg is reached at which the behavior becomes quasiperiodic. Then the two distances at
time ¢t and at t + T (displayed at the z and y axes) move around a circular contour: the distance to the
center is no long constant but is oscillating at a period different from the period of the robot surrounding
the light source. The Hopf bifurcation is here with respect to the radius. With respect to the trajectory
a limit cycle is changed into a torus (cf. also the upper three image in figure 4.8).



Chapter 6

Chaos

Effects of chaotic dynamics seemed strange to the scientists of the previous century. It took two decades
before substantial experimental evidence was accepted by the scientific community (and sufficiently
understood by the experimenters, perhaps) and one more decade before they made their way to the public.
Theoretical investigation have been performed without much attention of the scientific community already
from the times of Poincaré, i.e. since the end of the nineteenth century. Presently there is some common
knowledge that systems that involve nonlinear interactions have parameter ranges where they behave
irregular and very complex, show a sensitive dependency on initial conditions, but is still predictable on
short time scales, i.e. is deterministic.

The sensitivity to initial conditions is popularly expressed as the butterfly effect by a quotation, which
is attributed to Lorenz himself (although it was formulated originally slightly different): A butterfly in
China flutters its wings, which triggers a huge, complex series of events that results in a tornado in Texas
(or a snowstorm in New York, whatever is worse).

The prototypical chaotic dynamics is present in the baker transformation: Just as the dough is handled by
a baker typical chaotic systems combine stretching and folding: nearby trajectories are teared apart and
brought close to other trajectories. The expansion part increases also any imprecision in the knowledge
about the present state such that the prediction is eventually completely unrelated to the actual course
of the trajectory. If we would have started near an unstable fixed point of a non-chaotic system the
expansion would be similar. The folding of the phase space takes care that trajectories do not simply go
away from the fixed point but are returning to nearby points and the stretching starts anew.

In order to be chaotic, the irregularity of the behavior persist for arbitrary long times. The interactions
in the system will, however, suppress some degrees of freedom, such that the system eventually will be
describable be a certain number of variables. These variables which are functions of the original variables
form the embedding space of the system (Takens theorem). Interestingly, the trajectories of the systems
(usually) do not fill out any dense fraction of the embedding space, even if no embedding with a smaller
number of variables is possible. The “region” which is filled by the attractor is usually of a very complex
shape with rough non-differentiable boundaries. This is expressed by the mathematical term of a fractal:
A region in a space which fills a substantial part, but has holes and cavities everywhere, such that
its volume is actually zero. The extend to which the fractal fills the space is expressed by the fractal
dimension, a number which is (unlike a dimension in elementary mathematics) a non-integer number.
The fractal dimension can be used to characterize the dynamical behavior of a system.

A chaotic attractor can be considered of being made up by an infinite number of unstable limit cycles
or alternatively as being formed by an infinitely long limit cycle which returns to each of its point
arbitrarily closely but never exactly. This means chaoticity is instability everywhere in the (strange or
chaotic) attractor. Inside the attractor the distance between two initial conditions is further and further
increased and mixed with trajectories from other parts in the attractor. Still this is a continuous process

42



CHAPTER 6. CHAOS 43

and is thus predictable, but only for a few time units: Any imprecision in the knowledge about the
present state increases until the prediction is completely unrelated to the actual course of the trajectory.

Predictability is essential to distinguish chaotic behavior from merely noisy ones. Note, however, that
noise must be produced by some noise source, which usually can be assumed to be chaotic as well. Deter-
mining fractal dimensions is prohibitively difficult if the minimal embedding space is high dimensional.
Therefore we term low-dimensional irregular, sensitive systems chaotic if they are low-dimensional and
deterministic, and noisy otherwise.

6.1 Sample systems

6.1.1 Réossler system

The Rossler system [6] has been introduced to describe phenomena related to chemical waves. It seem
to be the most simple continuous system that shows chaotic behavior: Remember that the Poincaré-
Bendixon theorem implies that three equations are needed to produce chaos. Here we have two linear
equations and a single multiplicative non-linearity in the third equation.

T = —y—z
y = T+ ay
2 = b+(z—o)z

Typical parameter values are a = 0.2, b = 0.2 and ¢ = 5.7, a different set with similar results is a = 0.1,
b= 0.1 and ¢ = 14.0. The bifurcation scenario is best view

Consider for a moments the system with the condition z =0 :

r = —y
j = z+ay’

which is a linear system, since the nonlinearity affects only the z—coordinate. It is governed by the

dynamic matrix
0 -1
()

which has the eigenvalues \;/, = a + %\/(12 —4,ie. at 0 < a < 2 the eigenvalues are complex, but
with a positive real part, i.e. the system forms an unstable spiral. Returning now to the full system
we realize that (for small b) z is stable only if x is slightly smaller than ¢. When the spiral of the z-y
subsystem increases the value of x sufficiently strongly, the dynamics of z becomes unstable. Increasing
z values, however, tend to reduce the value of x until it becomes negative and reduces y to negative
values and drives z back near to zero. Then the cycle starts again. In dependence of the parameters it
may take several runs through the spiral before z exceeds ¢ or excursions of z of various heights. The
more outwards the systems is in the z-y spiral the larger becomes z and the more is the radius of the
z-y spiral reduced. Also for small radii of the spiral a not much larger radius is obtained after one cycle.
Only at intermediate radii, when z is not strongly turned on, large radii result, cf. figure Thus, with
respect to the radii in the z-y plane a stretching and folding is present at suitable parameter values,
rendering the dynamics chaotic.

6.1.2 The Lorenz system

The Lorenz system/[5]
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r(t+1)
o o
7

Figure 6.1: Sample trajectory of the Rossler attractor and return map of \/z2 + y? at the diagonal
section x =y, z,y < 0.

T = —ozx + oy
y = —xz4rz—y (6.1)
Z = zy — bz

looks similar as the Rossler system, spiraling outwards from an unstable fixed point until a non-linearity
send the trajectory back. Here we have, however, two unstable points and the trajectory either remains
in its spiraling behavior around one fixed or if it to much outward is is thrown near the other fixed point,
the more outward it be came, when the nonlinearity become essential, the close the trajectory is then
at the other fixed point. Also the return map looks (except for the stretching and folding behavior)
different to the one of Rossler’s system.

18

16 A

Z(t+T)

14

12 . . .
30 35 40
2(9)

Figure 6.2: Sample trajectory of the Lorenz attractor and return map of the peaks of the z-coordinate

Zmax-

Typical parameter values (the ones which have been used by Lorenz) are o = 10, b = %, and r = 28.
The parameters have a physical meaning, since the system describes the Rayleigh-Benard convection
(originally Lorenz studied a twelve dimensional system from meteorology, but he found the interesting
dynamics to be due to effects produced by equations (6.1). ¢ is the Prandtl number, r is the Rayleigh

number, and b is related to the thickness of the liquid layer which is heated from below and where the
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convection happens.

Increasing r leads from a stable fixed point at the origin (r < 1) by a pitchfork bifurcation to two stable
fixed points (1 < r < 24.74), later these two fixed points become unstable and the system run through a
series of chaotic orbits and cycles of various periods. But already while the fixed points are stable there
exist complex behavior, called transient chaos, i.e. trajectories with positive (local) Lyapunov exponents
which after long transients run into the fixed points (13.926 < r < 24.06). For r > 24.06 there exist
a chaotic attractor in an area outside the (still stable) fixed points, which is globally attracting for
r > 24.74.

6.1.3 Chaotic Braitenberg vehicle

The are other systems like Chua’s circuit, Duffing equation, the Toda Oscillator, the Van der Pol Os-
cillator, and the pendulum. In the context of this work we are interested whether robot dynamics can
show chaos. Figure 6.3 shows the behavior a Braitenberg vehicle surround an oscillating light source.
Displayed is the return map of the distance from the light source, compare figure 5.12.

Figure 6.3: Braitenberg vehicle near an oscillating light source. Plotted is the return map (At = 20) of
the distance from the light source at intervals of the light source change. Plots are for various values of
the light amplitude (o = 0.4, 0.5, 2.1, and 2.3. Below a &~ 0.37 the plot would appear as a circle (very
slow convergence) indicating a nearly incommensurable but regular torus for the behavior of the robot.
For larger values of a the simple torus breaks down and at a smaller distance from the light source an
increasingly complex toroid behavior sets in. Note that at a = 2.1 a perfect though very complex torus
is still maintained. From a = 2.2 the numerics suggests chaotic behavior. At even higher values of «
other types of complex tori reappear.
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6.2 Attractors

We have learned about fixed points, limit cycles, and tori, and now we will see a more strange type of
limit set, strange attractors. Attractors generally represent the features of the long term behavior of a
dynamical system, which can be trivial as in a fixed point, periodic as in limit cycles or rational tori,
or quasiperiodic as in tori. It can as well be irregular in some sense, as in strange attractors. For the
latter case we need to make the notion of an attractor more precise, namely, a closed set A of states of
a dynamical system is called an attractor if it shows the following properties.

1. Ais an invariant set. A trajectory that starts in A will never leave A.

2. A attracts an open set of initial conditions. The set of initial conditions outside A that are attracted
towards A are called the basin of attraction of A.

3. A is minimal. A does not contain any other set the satisfies the previous two conditions.

For a stable fixed point of a linear system, e.g. the whole R™ forms the basin of attraction. The attractor
is due to the third property only the fixed point itself. A chaotic attractor is an attractor which is
everywhere unstable in the sense that trajectories leave any point and in different directions as any other
trajectory leaving this point. Small deviations have a major effect in chaotic systems. We will make this
more precise in the following section 6.3.

6.3 Lyapunov exponents

In the examples considered above, the period a certain cyclic behavior became larger and larger when
tuning a appropriate control parameter. We have reasons to assume that cycle length eventually becomes
infinite, then it would be justified to speak of chaotic behavior. But can we really be sure? The usual
definition of chaoticity of a system is thus not based on the cycle length, but rather on a measure of
the sensitivity of the state of the system to the initial conditions. If two trajectories on average tend to
depart quickly from each other, we will speak of a chaotic system. This is formalized by the notion of
the Lyapunov exponent.

X = lim Slog (%@) (6.2)

The situation behind this definition is the following: We take an initial state zo and consider a small
ball of radius r around zy. Then the system is allowed to evolve for some time ¢. By this time all the
initial conditions inside the ball (if the ball was sufficiently small) form an ellipsoid around z(t). This
is because r was small, so only linear effects are of importance. In some directions of the phase space
the ball may have been compressed, in others is was stretched. The principal axes [; of the ellipsoid are
measured and may be used to characterize the dynamics. By (6.2) we obtain n numbers if the dynamics
has n degrees of freedom. Only A,,, the largest of these numbers, is of interest.

Because of the log, the sign of (6.2) depends on whether the derivative is smaller or larger than unity. If
for all 7 the diameter [; is smaller than r then the initial ball contracts and the dynamics is stable. If xg
is on or near a stable limit cycle then the largest diameter [,, remains of the same size as r. [, will be in
the direction of the limit cycle, because in any direction orthogonal to the limit cycle, the dynamics is
stable, and the corresponding derivatives are smaller than unity. In the direction of the limit cycle the
derivative is about one and, hence, A,, is about zero. For unstable systems at least [,, increases beyond r
such that log (4=) is positive. Now, if [, increases exponentially with time, i.e. [, ~ exp —\,(t)t, then
we have A\, = lim;_, oo A\p(#) if the limit exists.
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So far we have considered only a single initial position zg. If e.g. xg is an unstable fixed point, a locally
defined Lyapunov exponent would be larger than zero. For chaotic behavior we further require that
for the average over initial conditions A, is still larger than zero, i.e. that the system is on average
more unstable than it is stable. It may occur that the dynamics is in some regions of the phase space
contractive, even if is chaotic, we require only that the dynamics is dominated by the unstable regions.

6.3.1 Prediction horizon

The impossibility of predicting the fate of a specific trajectory is to be taken quite seriously. Using the
largest Lyapunov exponent A the dynamics of a perturbation 7(#) can be approximated by

n(t) ~n(0) exp At
Allowing for a tolerance of a, i.e. requiring that n(t) < a, allows to estimate

a

t rizn""‘_l 7Sy
hortzon ™ X8 000)

Naturally a > n(0) such that by decreasing n(0) the length of the time interval where a prediction better
than a is possible can be extended. Concerning the effectiveness of measuring the initial conditions more
precisely, consider the following example.

Suppose a prediction with a tolerance of 10’ is to be made. and the initial condition are known to &
decimal places (a > n(0) implies that k& > [). Then

1 107! log 10
thorizon = X log T0F — (k- l)T

E.g. let a = gswhen improving n = 0 from 107 to 10'® i.e. by a factor of 1.000.000, then k — [
becomes 10 instead of 4. This means that the usually completely unrealistically precise measurement
increase the prediction range in time merely about a factor of % This makes clear that prediction horizon
and the impossibility of long term predictions is not merely a practical issue, but will soon touch upon
fundamental physical limits. On the other hand, e.g. in order to extend the weather forecast from three

to four days, it might be still worth the effort.

6.3.2 Numerical calculation of the largest Lyapunov exponent

J.C. Sprott describes in some detail numerical methods (and effects of numerical errors) in nonlinear
systems. We summarize here his notes on the numerical calculation of the largest Lyapunov exponent
(cf. sprott.physics.wisc.edu/chaos/lyapexp.htm) The algorithm consists of six steps:

1. start with any initial condition in the basin of attraction

2. iterate until the orbit is in the attractor: usually this takes a few hundred time steps, but one
should be aware, that the dynamics can be very slow (cf. figure 4.8) or that transient chaos might
be present as in the Lorenz map. Ideally one would start with a point inside the attractor, but
on the other hand even trajectories slightly off the attractor give good estimates of the Lyapunov
exponent.

3. Select a nearby point separated by dy

4. Tterate both orbits one iteration and calculate d;
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5. Evaluate log ‘g—;‘ . Note that the Lyapunov exponent depends on the base of the logarithm. Al-

though the natural choice is the natural logarithm it is often interesting to use dual logarithm
because then the information loss about the initial conditions can be expressed in bits.

6. The crucial point is (in order to avoid to calculate “all” initial conditions starting in a ball of size dj
and than to analyze the ellipsoid the ball is mapped to) to choose good starting points, i.e. choose
the initial perturbation such that the trajectory is mapped to the maximal extend of the ellipsoid.
This can be done iteratively (i.e. without explicitely solving the system) by readjusting the initial
perturbation Zg:

Fo =21 + = (&1 — 21)
di

7. The steps 4 to 6 are to be repeated a few thousands of times while averaging step 5 in order to
estimate about two significant digits of the Lyapunov exponent. It is advisable to plot the estimated
Lyapunov exponent as a function of the length of the trajectory and to start several times at other
initial conditions in order to get sufficiently reliable results.

6.4 Poincaré section and Poincaré map

(from: monet.physik.unibas.ch/~elmer/pendulum /bterm.htm)

Figure 6.4: Poincaré section.

A carefully chosen (curved) plane in the phase space that is crossed by almost all orbits. It is a tool
developed by Henri Poincaré (1854-1912) for a visualization of the flow in a phase space of more than
two dimensions. The Poincaré section has one dimension less than the phase space. The Poincaré map
maps the points of the Poincaré section onto itself (not individually, but some to others). It relates
two consecutive intersection points. Note, that only those intersection points count which come from
the same side of the plane. A Poincaré map turns a continuous dynamical system into a discrete one.
If the Poincaré section is carefully chosen no information is lost concerning the qualitative behavior of
the dynamics. Poincaré maps are invertible maps because one gets z,, from x,; by following the orbit
backwards.

In periodically driven systems it is often convenient to use a stroboscopic map of the system by choosing
a phase ¢ of the driving and setting x,, = x(t,) if ¢(t,) = ¢s. Here, snapshots of the system are taken
at equidistant time intervals, where as in the Poincaré section method above a spatial criterion was used
instead and time intervals are not necessarily equidistant.

Poincaré maps of the stationary behaviors considered so far are as follows:

e A limit cycle becomes a fixed point of the map. The Poincaré section should be positioned orthog-
onal to the trajectory and stretch from the unstable fixed point in the center of the cycle across
the peripheral trajectory.
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e Tori become sets of periodic points. If the ratio of the frequencies is £ than the period is ¢. If
the frequencies are incommensurable any point in the section of the torus will occur such that a
(possibly deformed) circle is mapped onto itself. Tori are in some sense mapped to limit cycles.

e Stability properties for directions that lie in the section carry over from the original system to the
mapped system (orbital stability cannot be studied within Poincaré sections).

6.5 Maps

The Poincaré map introduced in section 6.4 allows to relate time-continuous to time-discrete dynamical
systems (provided that the continuous involves some periodicity). This allows to restrict ourselves (to
begin with) to the study of discrete systems. Whereas in continuous systems the Poincare-Bendixon
theorem excludes chaotic behavior from dimensions less or equal to two, chaos can be observed already
in one dimensional maps.

For example the Roessler attractor which is produced by a three dimensional continuous system can be
mapped to the sequence of points in a suitably chosen Poincaré section, cf. figure 6.5. We may consider
at first discrete maps the most prominent of which is the logistic map

Figure 6.5: Roessler attractor. The intersections of the trajectories with the Poincaré section are essen-
tially contained in a one dimensional subset of the section. Therefore, the Poincaré map can be expressed
as a one dimensional map.

6.6 Definition of a chaotic map

An equivalent definition is obtained in several steps starting from the notion of a forward set.

Let f be a map and let zy be an initial condition.  The forward limit set of the orbit
{f"(zo)} (the set of all points xy is mapped to by the iterated map) is the set: w(zy) =
{x|VYNVe>03In> N :|f"(zo —z)| <e}.
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If w(zg) D w(x1) we say that x; is attracted to w (xo) .

A bounded orbit {f™ (z0)} is called chaotic if it is not (asymptotically) periodic and if the largest
Lyapunov exponent is greater than zero.

w (z) is called a chaotic set.
An attractor is a chaotic set which attracts a set initial values of non-zero measure.

If a chaotic set is also an attractor it is called a chaotic attractor.

6.6.1 Two simple sample maps

The tent map

o= 2z, ifz <3
"1 7 1 -2z, otherwise

and the “22z mod 1”7 map

_ _ 2z, ifr<i
Tnt1 = 2wy mod 1 = { 2z, —1 otherwise
map the unit interval onto itself, cf. figure 6.6. Both have similar properties. The tent map is rather sim-
ilar to the Poincaré map of the Lorenz system and in some sense also to the logistic map (cf. section 6.7).
The “2z mod 1” map allows directly for an interpretation in terms of binary numbers.

X n+l X

1 1

tent map "2x mod 1" map

Figure 6.6: Two simple maps that possess chaotic orbits.

6.6.2 Lyapunov exponent of the 2z mod 1 map

The points of the unit interval that are eventually mapped to % by the 2z mod 1 map form a countable
set, since they are mapped to % by finitely many interactions. Excluding these points excludes only a
set, of measure zero out of the unit interval. For the points that never reach % we can calculated the
derivative of the map as well as the derivative of any iterate of the map, which is needed in order to
determine the Lyapunov exponent:

) 1 n . ) 1 n
nll)néo - Zln|f (z:)| = nh_}rrgo - Zln? =In2
i=1 i=1
The Lyapunov exponent is defined as an average over initial conditions, but since the excluded points are
of measure zero they do not contribute to the average (the generalized derivative at % bounded between

+2 ). We have thus found a positive Lyapunov exponent, indicating that there exist a chaotic attractor.
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This does not imply that there is a single chaotic orbit, actually there is an infinite number of chaotic
orbits. The Lyapunov exponent of the tent map amounts to the same value. Interestingly, also the
logistic map (at A = 4) has the same Lyapunov exponent. In order to find out more about the structure
of the attractors we consider the so-called symbolic dynamics of the maps.

6.6.3 Symbolic dynamics in the 2x mod 1 map

The dynamics of the map z,4+1 = f(z,) = 2z, mod 1 has a very suggestive interpretation in terms

of binary numbers. We define the intervals L = [0,1) and R = [§,1). Starting from the initial value
xp we keep track of whether z,, is in the interval L or in R. E.g. g = % has the binary representation
xzo = 0.00110011. The digit just right of the decimal point determines whether z € L (in case of a “0”)
or z € R (in case of a “1”). Applying f to this binary expression results in shifting all the digits one

place to the left. If in this way a “1” passes the decimal point it is cut away by the mod function. Let

us consider the iterates of zp = 1 :

n | =, | binary representation | left/right
0] 1 0.00110011 L
1] 2 0.0110011 L
2| & 0.110011 R
3] £ 0.10011 R
4] £ 0.00110011 L
5] 2 0.0110011 L

The special example suggest, that a starting value xg the binary of which eventually become periodic,
the sequence of L’s and R’s becomes periodic as well after some iterations of the map f, i.e. the orbit
f™ (x,,) created by x is periodic if z is rational.

In the special case that the period of zy consists of only 0’s the map necessarily ends up in the point
0.0 (zero) when the a-periodic part of the sequence of binary digits is shifted beyond the decimal point
and deleted by the mod operation. Before 0.0 is reached, say this happen at step k the orbit passes
Tp—1 = % = 0.1 (binary) unless it is not already at 0.0, in other words, the orbits which are excluded in
the above calculation of the Lyapunov exponent are the ones which run into the fixed point at 0.0 after
passing % The periodic binary sequences, i.e. the rational numbers which do not have a denominator of
2k will stay away from the fixed point and follow periodic orbits forever. The derivative of f is, however,
as we have seen, equal to 2, i.e. the orbits are unstable: If two initial conditions are different only after
the k binary place it takes k iterations of the map until the orbits end up in different intervals L and R,
i.e. until the two orbits are separated.

The number rational points in the unit interval is “only” countably infinite, i.e. it is small in comparison
to the number of irrational points. Irrational numbers produce an infinite, a-periodic sequence of L’s
and R’s, which corresponds uniquely to the number (to be mathematically exact we have to exclude
sequences of only 1’s (or R’s) after a certain binary digital place). Any aperiodic sequence is a chaotic
orbit. And since there are uncountably many aperiodic orbits there are also uncountably many chaotic
behaviors possible. Each of the orbits contains all the left-shifted variants of a prototypical sequence, and
any right-shifted variants (with arbitrary insertions of new digits) are mapped eventually to the orbit.

6.7 Logistic map

6.7.1 Phenomenology

The sequence of points defined by the logistic map

Tne1 = Fxy) = Azy (1 — 2p)
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is approaching an attractor which is independent of the initial value zy. For different values of A € [0, 4]
the attractor is different. For small values of A the limit set is a single fixed point, the position of which
is however dependent on \. For large A the fixed point changes into a period-two cycle by a pitchfork
bifurcation. One of the two alternating points can be considered as a fixed point of the two-step map
ZTpio = F(F(x,)) for even n, the other one for odd n. Further increasing of A lead to more pitchfork
bifurcations and each time to cycles of double lengths. Eventually, the distance between bifurcations goes
to zero the cycle length tend to infinity and a chaotic range is reached. The chaotic regime is interspersed
with periodic windows where now cycle lengths occur which are not powers of two, cf. figure 6.7.
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Figure 6.7: Bifurcation scenario of the logistic map. (horizontal axis: bifurcation parameter A, vertical
axis: state x). (left) full range of parameter A. (right) region of large A magnified form the left figure.
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Figure 6.8: Bifurcation scenario of the logistic map (cf. figure 6.7). Here also the unstable fixed point
and unstable cycles with small periods are plotted (left). In the chaotic regions the unstable cycles cover
the attractor densely. Note that the period-three cycle is created by a saddle-node bifurcation when
the chaotic region is left, rather than by a pitchfork bifurcation. Later, the stable branch of the 3-cycle
undergoes a pitchfork bifurcation into a 6-cycle and an unstable 3-cycle, as visible in the magnified image
on the right.

6.7.2 Controlling the logistic map

At a pitchfork bifurcation (cf. figure 6.8) the single stable fixed point does not simply cease to exist, but
is continues as an unstable fixed point. That is, when the control parameter is increased quickly, the
state will remain for a short time at the now unstable fixed point, because the previously stable dynamics
has moved the state sufficiently exactly to that position. Before the state is eventually driven away from
the unstable fixed point, an control algorithm may change the parameter such that the system remains
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stable. Actually, the combined system of original dynamics and the control algorithm is supposed to
have a stable fixed point where the original dynamics has an unstable one. If the control algorithm has
failed to stabilize the state it will get another chance, since because of chaoticity the state will return
close to the fixed point again (Here we have assumed, that the system has the additional property of
being mizing. A merely chaotic system can consist of several components such that the return property
holds only in each component separately.)

How such a control algorithm shall look like?

Chaotic attractors cover a multitude of unstable limit cycles and tori. In order to exploit this richness of
behavior one should have a means to select and stabilize behaviors, and to switch to different behaviors.
The advantage is that control of unstable behaviors requires only tiny control actions, although these
have to be chosen ’intelligently’. The complexity of the behavior is thus to be stored in the algorithm.

6.8 Screen creatures

Let us now consider the case that the state x defines the pixel position of a “creature” moving on the
n-dimensional screen (n = 2). There is a function 7 : R™ — R"™ which maps an arbitrary position to a
pixel position. We write

X =7(2)

where z € R? and X = (i, ) is a pixel position. The mapping of an arbitrary position z to a pixel
position ("pixelization”) can be done according to one of the following scenarios
1. In each dimension: Map pey,; to the nearest neighbor pixel coordinate.

2. In each dimension: Map Zpey,; to a pixel coordinate which is chosen randomly (with equal proba-
bility) from a given neighborhood.

3. Quite generally we use periodic boundary conditions, i.e. actually we use
X=7(2)

where
fl = ZI mod Nl

and NV, is the number of pixels in the | = i, j direction of the screen.
The controller K (z) of the creature defines the new target position in terms of the current one. With

a linear controller we may write the time discrete dynamical system governing the motion of the screen
creature as

Azy = cuzi+cipre + &
Azxs = co1x1 + 202 + &
or
Ar =cr+¢

where Az = z;.1 — x4, 7, € R? and the noise ¢ results from the pixelization
E=7(rv+ Azx) — (z + Ax)
The dynamics maps between pixel position if only the starting state is a pixel position.

We note that the noise can be of different kind depending on whether we use the random pixelization
scheme or the nearest neighbor one. In the latter case the noise depends in a sensitive way on the state
of the system itself. The screen creatures as introduced will display an very interesting behavior only
for larger values of ¢;; due to the periodic boundary conditions. However this changes drastically if we
use a nonlinear controller and even more so if we introduce ensembles of interacting creatures which may
model ecologies.
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MORE STUFF TO COME.



Appendix A

Main ideas of this part

Here a collection of the main fact, ideas, results etc. is (to be) presented. This list is not intended to be
understandable by itself, refer to the main text in case of any problems.
e situated AI vs. GOFAI

e agent architectures (general architecture, SPA-architecture, subsumption architecture, homeoki-
netic systems)

e linear systems
e linearization of non-linear systems

e bifurcation theory (pitchfork bifurcation, Hopf bifurcation, transcritical bifurcation; subcritical and
supercritical versions of these bifurcation types)

e chaos in nonlinear continuous systems and in simple maps
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