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Abstract. Dynamical systems offer intriguing possibilities as a sub-
strate for the generation of behaviour due to their rich behavioural com-
plexity. However this complexity together with the largely covert relation
between the parameters and the behaviour of the agent is also the main
hindrance in the goal oriented design of a behaviour system. The paper
presents a general approach to the self-regulation of dynamical systems
so that the design problem is circumvented. We consider the controller
(a neural network) as the mediator for changes in the sensor values over
time and define a dynamics for the parameters of the controller by max-
imising the dynamical complexity of the sensorimotor loop under the
condition that the consequences of the actions taken are still predictable.
This very general principle is given a concrete mathematical formulation
and implemented in an extremely robust and versatile algorithm for the
parameter dynamics of the controller. We consider two different appli-
cations, a mechanical device called the rocking stumper and the ODE
simulations of a ”snake” with five degrees of freedom. From this and
many other applications we conclude that our self-regulating parame-
ter dynamics engenders artificial life forms of unknown so far dynamical
complexity.

1 Introduction

Dynamical systems form a powerful tool for both the analysis and the realization
of the behaviour of autonomous robots. The increased interest in using dynamical
system theory for the analysis of the robot in its environment may be dated
back to the seminal paper by Randall Beer [1] in 1995. About at the same time
the book [12] by Port and van Gelder initiated a broad interest in the role of
dynamical systems for understanding life and cognition. There are numerous
applications of this approach so far. In particular, the dynamical system theory
has been used to understand the functionality of evolved networks for robot
control [10], see for instance [9].

Apart from providing analytical tools, dynamical systems offer intriguing
possibilities as a substrate for the generation of behaviour. Let us consider a
robot which is controlled by a neural network, say, transforming sensor values
into motor commands. When using a recurrent network this transformation can
be rather complex and reaches far beyond a simple reactive paradigm. This has



been considered by several authors under varying contexts and with varying
success. An elaborate behaviour based design system has been developed in the
context of dual dynamics. The system has a layered structure of behavioural
subsystems realized by ordinary differential equations, each layer having its own
time constant. Communication between the subsystems is realized by specific
interaction and ”bifurcation-inducing” mechanisms which have to be designed
by hand, cf. [2]. However applications so far are scarce. Dynamical systems can
also be helpful in solving decision problems. For instance in [5] the authors show
how successful route selection through a cluttered environment can emerge from
on-line steering dynamics, without explicit path planning. Of particular interest
is the dynamical system paradigm for walking machines where neural oscillators
are used to generate the different gaits, see for instance [6], [14], [8] and [11].

The authors quoted have mainly tried to design dynamical systems such
that they realize prescribed tasks, the smooth navigation through a cluttered
environment being a prominent example. The main problem with this approach,
however, is in the design of the dynamical systems in view of the largely covert
relation between parameters and behaviour of the robot.

The main objective of our work is in fostering the self-organisation of such
systems under a true emergentist paradigm. Central is the hope to find a mecha-
nisms of self-regulation for the parameters so that in the rich reservoir of possible
behaviours a working regime is stabilised which ensures the viability of the agent.
Under this paradigm the aim is not the realization of a specific task given from
outside but the emergence of organised motions.

Taking emergence at its roots means in our case to formulate the objective
for the robot on a very general not domain related level. In the present paper
we develop a dynamics for the parameters of the controller which is essentially
driven by the requirement that the dynamical complexity of the sensorimotor
loop is to increase moderated by the requirement that the consequences of the
actions taken are still predictable. It is the message of the present paper that
this very general statement can be given a concrete mathematical formulation
and that the emerging behaviours are of an unknown so far complexity.

2 Principles of self-regulation

Based on the paper [4] we give here the basic principles of our approach. Basic
to our approach is the dynamics of the sensor values. Let us consider a robot
which produces in each instant t = 0, 1, 2, . . . of time the vector of sensor values
xt ∈ Rn. By way of example we may consider a wheel driven robot where

x = (vl, vr, IR1, . . . , IRn−2)
> (1)

with vl and vr are the wheel velocities of the left and right wheel, respectively,
as measured by the wheel counters, IRi is the value of the infrared sensor i with
0 ≤ IRi ≤ 1. We use closed loop control, i.e. the controller is given by a function
K : Rn → Rm mapping sensor values x ∈ Rn to motor values y ∈ Rm

y = K (x)
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all variables being at time t. In the example we have y = (y1, y2)
>, yi being the

control (target velocity) of wheel i. The controller may or may not depend on
internal states realizing a proactive or a purely reactive behaviour, respectively.

Our controller is to be adaptive, i.e. it depends on a set of parameters C ∈ RP .
In the cases considered explicitly below the controller is given by the pseudolinear
expression

Ki (x) = g (zi) (2)

where g (z) = tanh (z) and

zi =
∑

j

Cijxj +Hi (3)

This seems to be overly trivial concerning the set of behaviours which are to be
realized. Note however that in our case the behaviours are generated essentially
also by an interplay of neuronal and synaptic dynamics which makes the system
highly nontrivial.

2.1 World model and sensorimotor dynamics

We assume that our robot has a minimum ability for cognition. This is realized
by a world model F : Rn × Rm → Rn mapping the actions y and old sensor
values x to the new sensor values, i.e.

xt+1 = F (xt, yt) + ξt (4)

where ξt is the model error. The model F can be learned by the robot using
any learning algorithm of supervised learning. Let the model be a parameterised
function (neural net) with parameters a ∈ RM . The parameters a can be adapted
by gradient descending the error function based on ξ. The structure of the model
and the learning procedure define the passive cognitive abilities of the robot.

With these notions we may write the dynamics of the sensorimotor loop in
the closed form

xt+1 = ψ (xt) + ξt (5)

where ψ (x) = F (x,K(x)). The function ψ can be visualised as a time series
predictor for the time series of the sensor values xt with the controller being
known.

In the case considered below we have x, y ∈ Rn and we assume that the
response of the sensor is linearly related to the motor command, i.e. we write
(dropping the time index at the matrix A here and in the following)

xt+1 = Ayt + ξt (6)

where A is a matrix and ξ the modelling error ξ = x− xpred. with

xpred.
t+1 = Ayt (7)
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denoting the model values of the new inputs. The model can be learned by the
delta rule as

∆A = εM ξty
>t (8)

Then
ψ (x) = AK (x)

and the sensorimotor loop is

xt+1 = AK (xt) + ξt (9)

Again, this model seems to be oversimplified. However model learning will be
seen to be very fast so that different world situations are modelled by relearning.

2.2 The paradigm of controlled sensitivity

As discussed in more detail in [4] the behaviour is defined by formulating a
parameter dynamics for the controller so that a self-regulating system is ob-
tained. The parameter dynamics is essentially driven by the requirements, that
the dynamical complexity of the sensorimotor loop is to increase, and that the
consequences of the actions taken are still predictable. The dynamical complex-
ity is directly related to the sensitivity of the sensorimotor dynamics to changes
in the sensor values. We claim that one can combine the two above requirements
by introducing sensor values x̂ defined by

‖xt+1 − ψ (x̂t)‖ = min (10)

with a conveniently defined norm1. Explicitly the shift vt = x̂t − xt is

vt = arg min
u
‖xt+1 − ψ (xt + u)‖ (11)

Obviously v is small if both ξ (which measures the predictability) is small and
the function ψ is sensitive to its arguments. Hence the two aims of getting a robot
with both highly sensitive reactions and predictability of behaviour amounts to
the requirement that the shift necessary to produce the new sensor values is as
small as possible. Consequently we may define

Et = v2
t (12)

where (dropping the time index) v2 = v>v as our objective function for the
behaviour of the robot. Using gradient descent the parameter dynamics is

∆C = −ε∂E
∂C

(x,C) (13)

Note that the parameter dynamics Eq. 13 is updated in each time step so that in
practical applications the parameters may change on the behavioural time scale.
This means that the parameter dynamics is constitutive for the behaviour of the
robot.
1 In general the choice of x̂ is not unambiguous. In this case one may use the set of

all possible solutions in order to create the learning signal.
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2.3 Explicit expressions

The above equations define our approach in principle. However in order to better
understand the nature of the parameter dynamics we study it in the approxi-
mation of small v. The definition Eq. 10 of the shift may be written as the
requirement

‖ψ (x) + ξ − ψ (x+ v)‖ = min (14)

If v is small we may use Taylor expansion to write

ψ (x+ v) = ψ (x) + L (x) v (15)

where L is the Jacobian matrix of the sensorimotor loop defined as

Lij =
∂

∂xj
ψi (x)

Using Eq. 15 in Eq. 14 we find2

v = L−1 (x) ξ

and obtaining v means now ”only” to find the (pseudo-) inverse of the matrix
L. Introducing the positive semidefinite matrix Q = LL> Eq. 12 may now be
written as

E = ξ>Q−1ξ (16)

see [4] for further details. We used this expression in the parameter dynamics
Eq. 13 in the examples given below. As explained above, in these examples we
have

ψi (x) =
n∑

k=1

Aikg (zk)

so that

Lij (x) =
n∑

k=1

Aikg
′ (zk)Ckj (17)

Eq. 16 involves the inverse of the matrix Q which measures the sensitivity of the
sensorimotor loop towards changes in the sensor values. Therefore, minimising E
is immediately seen to increase this sensitivity. We have shown in many practical
applications that in this way the robot develops an explorative behaviour which
however is moderated by the fact that E is also small if the prediction error ξ
is small. Behaviour may be understood as the compromise between these two
opposing tendencies.

2 If L is singular this is to be understood in the sense of the pseudoinverse.
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3 Example I. The rocking stumper

One of the interesting phenomena observed under the parameter dynamics de-
rived from Eq. 13 is the active closing of the sensorimotor loop so that the system
is set into motion, see [4]. In order to demonstrate this phenomenon we consider
here a system consisting of a stumper-like object with a pole mounted on it
driven by two motors in orthogonal directions, see Fig. 1. The only sensors we
have are two infrared sensors mounted at the two front ends of the trunk looking
down and slightly sideways. Their values x1 and x2 depend on the distance to
the ground in a highly nonlinear way. Our controller consists of two neurons
with outputs y1, y2 controlling the angles of the pole relative to the trunk.

Fig. 1. Pole driven stumper. Left: close view from the top; Centre: pole to the back,
Right: pole to the front

We use the linear world model with the learning step of Eq. 8 and the pseu-
dolinear controller so that the gradient of the error E = ξ>L−1TL−1ξ is easily
evaluated since the inversion of the matrix L can be done explicitly.

The initialisation of the parameters Ckl can be done randomly starting with
small values. However one should check whether the sign of the determinant
of L is positive, if not reinitialise. The point here is that the error E diverges
if L is singular and that the sign of the determinant defines the nature of the
bifurcations taking place. If the determinant is negative, the feed-back strength
in the sensorimotor loop is driven towards large negative values. Once beyond
the flip bifurcation the signs of the controller outputs are inverted in each time
step which is difficult to realise for the robot.

After initialisation we at first have subcritical values for the feed-back strength
of the sensorimotor loop (see [4] for details) so that the influence of the noise
(the prediction error ξ) is damped and we observe only small fluctuations of the
pole position. With increasing values of the controller parameters C and there-
fore increasing feed-back strength the pole movements become stronger so that
after some time a bifurcation point, typically the Neimark-Sacker bifurcation,
see e.g. [7], [11] for details, is reached and an (irregular) oscillatory motion sets
in. In Fig. 2 the behaviour, reflected by the sensor readings, and the parameter
adaptation is displayed over time.
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Fig. 2. Behaviour represented by sensor readings and controller parameters starting
from low initialisation. Left: Sensor values from left and right infrared sensor over time.
One can see clearly how the controller becomes sensitive and increases Ckl; Right:
Controller parameter values over time. The controller matrix is adapted to map the
difference of both sensors to servo 1 (y0) and the sum of both sensors to servo 2 (y1).
The bias terms (upper two of the lower three lines) Hi are seen to be adapted such as
to compensate for the positive average of the sensor values.

The interesting point in these experiments is that despite of the extremely
nonlinear and nondeterministic behaviour of the mechanical system (the stumper)
the controller learns to produce a motion which looks like the system is trying
to probe into the possibilities of its body in a more or less controlled manner. In
Fig. 3 the behaviour in a later stage of the experiment is shown.

We observed a rocking (oscillatory) as well as a walking like behaviour, the
latter being caused by a rotational mode of the pole with suitable phase shift. The
emergence of these modes is a direct consequence of the sensitisation paradigm.
In fact, it is in these modes that the controller – based on the current sensor
values – can evoke the maximum change in the sensor values over the time step.
Ideally this would mean to ”feel” the eigenfrequency of the mechanical system
which is indeed about what happens.

In order to demonstrate the environment related nature of the emerging
behaviours we put the performing robot into a corner where the infrared sensors
measure a much shorter distance. As a result the robot became calm for a short
time. Then the parameters were readapted to the new situation, so that an
oscillatory behaviour sets in again. The same readaptation scenario occurred
when moving the robot away from the corner by hand. We see that the robot is
always sensitive to its environment and adapts to new situations quickly.

4 Example II Snakes

Systems with more degrees of freedom and of much higher complexity may be
realised in ODE simulations, cf. [13]. We consider snakes as sketched in Fig. 4.
In this application we use proprioceptive sensors only so that the sensorimotor
loop now has n degrees of freedom where n is the number of joints. We assume
again a linear world model in the form of Eq. 7.
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Fig. 3. Environment sensitive behaviour. Top: Sensor values from left and right infrared
sensor over time; Bottom: Parameter values over time; Until time 640 we observed
rocking (oscillatory) motion with a short break at time 480. Then the robot was set
into a corner. The infrared sensors measure much shorter distances since they see the
walls. At time 870 the robot was pulled back into free space. After each change of the
environment the robot was calm for a while (low sensor fluctuation) and probed the
new environment, however after a short time the robot rocked again.

Fig. 4. A snake with two joints. Sensor values sent to the controller are the angular
velocities of the joints, the controller outputs being the desired angular velocities. Note
that the controller has no knowledge about the angles, the masses and geometry of the
arm, and other environmental observables. The only information about the world is
given by collisions and friction forces.

In the general n dimensional case the inversion of the matrix L does not make
sense numerically. Instead we find v directly by solving the equation ξ = Lv for
v by some numerical method. A rather crude approximation turns out to be
appropriate.

In the following experiments we used a snake with n = 5 joints on a plane,
see Fig. 5. We initialise the matrix A as a diagonal matrix with the Aii chosen
such that the response of the joints is already coarsely modelled. The matrix C
is also chosen diagonal but with very small random values for the Cii so that in

8



Fig. 5. Screenshots of snakes on a plane. Left: in initial position; Centre: crawling;
Right: jumping.

the beginning the joints execute fluctuating motions only. In the beginning we
have n decoupled feed-back loops due to this diagonal initialisation. As seen in
Fig. 6 the parameter dynamics rapidly increases the diagonal elements of C so
that the feed-back strength in each of the loops increases. After some time they
reach the critical values where the fixed points are destabilised and an intensive
motion sets in. In this regime the nondiagonal elements are also seen to develop
so that the dynamics of the joints are coupled. This is on the one hand again
an effect due to the sensitisation pressure which favours oscillatory modes. On
the other hand the reaction of the joints to the applied forces are correlated due
to collision, inertia, and friction effects. Therefore the motion of the snake is
largely depending on the environmental conditions which is clearly born out by
the experiments. The coherence in the motions of the joints is reflected by the
nondiagonal elements of the matrix A, see Fig. 7.

The emerging dynamics is quite complex and rather difficult to analyse. How-
ever the degree of organisation of the motion can for instance be measured by
the motion of the centre of the snake projected on the plane, see Fig. 8 (left). We
find that in the beginning the centre is more or less stationary (in a time average
picture) but after some time the snake covers increasingly larger regions of space.
Apart from that, the altitudes of the snake segments also provide information
about the type of behaviour. For analytical purpose we consider the centre of
the highest and lowest segment over time. The difference between both can be
interpreted as a measure for the current posture. Jumping behaviour is charac-
terised by an altitude > 0.5 of the lowest segment. As shown in Fig. 8 (right)
the snake sits up frequently and occasionally performs jumps. Note, that even
on long time scales we observe qualitative changes in the parameters (Fig. 7),
indicating a rich behaviour diversity. This is also seen directly when watching
the snake over a long time (see the videos). We did this in many experiments
in varying environments and also with two snakes in a cage. In all cases we ob-
served an impressing variety of behaviours so that we are inclined to say that
our self-regulation controller makes the snake ”alive”.
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Fig. 6. Development of the parameters Ai1 and C1j associated with the neuron con-
trolling joint 1 in the initial phase of an experiment. Left: The world model matrix A
is initialised as the unit matrix reflecting the independence of the joints. The learning
dynamics preserves this in the initial phase. Right: The diagonal elements of the matrix
C are initialised with very small random values for Cii. The diagonal elements increase
until the supercritical feed-back strength is reached and the system starts to move (at
about time 500). The development of the nondiagonal elements reflects the integration
of contributions of the other segments. However, the self coupling Cii is seen to stay
still dominant (top line).

5 Discussion

We have demonstrated in the present paper that our general paradigm in appli-
cations to completely different agents yields in each case an environment related
active behaviour. The emerging behaviours are are dictated by the body of the
agent. Our stumper develops rocking or even ”walking” modes with sometimes
covering substantial regions of space. The snake which is mechanically com-
pletely different is seen to develop crawling and jumping modes which may be
considered as emerging behavioural organisation where the snake learns to feel
the possibilities of its body.

The emerging behaviours may be called environment related although they
are generated by a completely domain invariant principle. For instance this is
demonstrated by the stumper which when in a rocking or ”walking” mode can
be taken and put in a corner so that there is a completely new mechanical
and sensorial situation. Nevertheless after some time it again finds back into its
rocking behaviour so that eventually it gets out of situations where it is captured.
Similarly we can put one or several of our snakes into a cluttered environment
(work in progress) without the snakes being caught in corners. Moreover the
snakes may entangle but in all situations find a way to disentangle. First results
can be found in the videos in [3].

It is a further interesting property of our approach that the parameter dy-
namics never gets stuck in the saturation regions of the neurons or that the
activity of the agents goes down for a longer time. Although we have taken
some numerical precautions this is still an amazing property of the algorithm in
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Fig. 7. Controller and model parameters for joints 2 (top) and 3 (bottom)during time
step 150 000 to 200 000. (every 100th value plotted). Left: Model parameters; Right:
Controller parameters; In accordance to our sensitisation paradigm the controller pa-
rameters are substantially changing over time but stay in a certain range, so that the
neurons remain in a sensitive working regime. The model parameters Aij describe the
observed angular velocity at joint i as the response of the motor action applied to joint
j. One would expect a diagonal matrix A, however some non-diagonal elements are
non-zero, reflecting the correlations between different joints, for instance a[0][3] in the
lower left diagram.

Fig. 8. Motion of snake with 5 joints (6 segments with length 1) during the experiment.
Left: Position of the snakes centre projected on the plane over 165 000 time steps with
starting point at (-3,0). Right: Altitudes of the centres of the highest (max) and the
lowest (min) segment from time step 60 000 to 65 000. Segments laying completely on
the ground have a altitude of 0.1, standing upright have a altitude of 0.5. One can see
that the snake sits up and even jumps so that it exceeds the altitude of 0.5 with the
lowest segment.
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view of the fact that the parameter dynamics ultimately is driven by the noise
(prediction error) which may change by orders of magnitude.

We consider our approach as a novel contribution to the realization of ar-
tificial life systems. In fact if life is an emerging property of complex systems
in challenging environments then we may claim that we observe self-organised
forms of (artificial) life of a rather high complexity. At the present step of our
development the behaviours although related to the specific environments are
without goal. As a next step we will realize a so called behaviour based re-
inforcement learning. When watching the behaving system one often observes
behavioural sequences which might be helpful in reaching a specific goal. The
idea is to endorse these with reinforcements in order to incrementally shape the
system into a goal oriented behaviour.

References

1. R. D. Beer. A dynamical systems perspective on agent-environment interaction.
Artif. Intell., 72(1-2):173–215, 1995.

2. A. Bredenfeld, H. Jaeger, and T. Christaller. Mobile robots with dual dynamics.
ERCIM News, 42, 2001.

3. R. Der. Videos of self-organised robot behavior. http://www.informatik.uni-
leipzig.de/˜ der/Forschung/videos.html, 2005.

4. R. Der, F. Hesse, and R. Liebscher. Contingent robot behavior generated by self-
referential dynamical systems. Autonomous robots, 2005. submitted.

5. B. R. Fajen, W. H. Warren, S. Temizer, and L. P. Kaelbling. A dynamical model of
visually-guided steering, obstacle avoidance, and route selection. Int. J. Comput.
Vision, 54(1-3):13–34, 2003.
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