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Abstract

Self-organization is a key phenomenon in many systems be they phys-
ical, chemical, social or economical in nature. The realisation of agents
which are able of self-organizing their behavior forms a major challenge
for the engineering of artificial systems. The talk demonstrates our gen-
eral approach to this task which has been developed and tested in various
examples in recent years. The robot’s ”brain” consists of a controller and
a world model both realized by a neural network. Our general paradigm
of minimizing the so called time loop error is used in order to learn both
the model and the controller concomitantly from scratch. We apply this
approach to different robots with complicated physical properties which
are completely unknown to the ”brain”. Nevertheless after some time the
robots develop behaviors which are both body and environment related
in a completely self-organized way. The applications are demonstrated by
several videos of wheeled robots, a ”rocking stamper”, a spherical robot,
various snake like artefacts, and an artificial dog. More information on
our video page http://robot.informatik.uni-leipzig.de/research/videos/.

1 Introduction

Artificial life in the sense of ”life as it could be” (Langton) offers a number of
intriguing possibilities for different fields of science as mirrored by the different
directions the AL research has taken in the two decades of its existence. In
particular, it allows to see life in a different and even broader view as the one
given by biology itself. The latter is dictated by the fighting for ressources, the
ulitmate goal of life being to survive in a competing ecology. As a consequence
nature has taken the way of building on solutions once found effective, and to
further optimize those, instead of having the freedom to just play around and
try ever new possibilities.

The study of robotic systems can shed some light into the roots of life which
range deeper than the pure necessity of survival. Stripping life from the neces-
sities of survival will seek the key features of artificial creatures in autonomy,
curiosity, creativity and an inherent drive for exploring the body and the world.
There are several approaches able to meeting these challenges. In particular
we note the attempts of guiding autonomous learning by internal reinforcement
signals [11] and to task independent learning [7, 9], [5]. The problem is that
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these and other approaches work best with discrete state-action spaces of not
too many dimensions.

Robots on the other hand are physical systems with potentially infinitely
many degrees of freedom. We believe that the forces of self-organization as
we know it from physical and biological systems may provide an artificial be-
ing with the intrinsic drive for development. We developed such an approach
and demonstrated it to work in real time and continuous space with embodied
robots of up to 25 active degrees of freedom. Applications with both real [1]
and simulated robots have shown many interesting and unexpected behaviours
ranging from coiling, hurling and jumping modes in snake like artifacts, over
stable rolling modes of spherical robots [3] to dogs climbing over walls and the
like, see our video page http://robot.informatik.uni-leipzig.de/research/videos/.
What we observe in these experiments are behaviours with high sensorimotor
coordination, emerging in a ”playful” exploration of the bodily affordances. Our
approach is closely related to the thinking of embodied Artificial Intelligence [8]
which sees brain and body of the behaving agent together with the environment
as a common dynamical system which can not be simply divided into its parts.

Potential applications are expected among others in the field of developmen-
tal robotics, see [12], [4], in the early sensorimotor stage, cf. [2].

2 The robots

Our approach can be applied to a great variety of robots. In the present paper
we consider an artificial dog and discuss the behaviors emerging from our general
self-organization paradigm presented in Sec. 2.3 below.

2.1 The body

Our robots are simulated in the lpzrobots simulation tool [6]. The dog, con-
structed by Georg Martius, consists of geometrical primitives, connected with
each other by joints. Each joint is driven by a servo—motor developed. Each
motor command −1 < yi < 1 is the target position of the angle of joint i. The
dog has proprioceptive sensors only each xi being the true angle of joint i. If
the joints are moving freely, motor and sensor values xi agree at each instant
of time but in general there may be great differences due to physical effects
like inertia and/or collissions with objects or with other limbs. The difference
between true and ideal sensor values (xi = yi) is the only information the agent
has about its interactions with the environment.

Figure 1: The dog when facing a wall sometimes starts attacking it.
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2.2 The ”brain”

The brain of the agents consists of a controller and a self-model. The controller
is realized as a simple neural network with one hidden layer mapping at each step
of time t the vector of sensor values xt ∈ Rn to the vector of motor commands
yt ∈ Rn, i.e. the net is the map K : Rn → R

n so that yt = K (xt). Moreover
there is a neural network F : Rn → R

n acting as a self-model, mapping current
motor values to the sensor values in the next time step, i.e. xt+1 = F (yt)+ξ

t+1

where ξ is the model error. The dynamics of the sensorimotor loop is modelled
by the brain as

xt+1 = ψ (xt) + ξ
t+1

where ψ (x) = F (K (x)). A true self-organization approach should be able to
solve the following problem: Given an arbitrary body, connect it to our brain
in a ”juvenile” state and then let self-organization drive the development of the
behavior of the robot.

2.3 Realizing self-organization

As known from physics, self-organisation results from the compromise between
a driving force which amplifies fluctuations and a regulating force which tries
to constrain the system. In our paradigm the destabilisation is achieved by
increasing the sensitivity of the sensoric response induced by the actions taken.
Since the controls (motor values) are based on the current sensor values, in-
creasing the sensitivity in this sense means amplifying small changes in sensor
values over time. This drives the robot towards a chaotic regime.

The counteracting force is obtained from the requirement that the conse-
quences of the actions are still predictable. This should keep the robot in ”har-
mony” with the physics of its body and the environment. It has been shown
in earlier work, cf. [?], that these two objectives can be combined in the so
called time loop error obtained from the virtual sensor values x̂t defined from
the requirement that ‖xt+1 − ψ (x̂t)‖ is minimal. We define the time loop error

E = vT v (1)

where v = x̂t − xt and drive the parameters c of the controller network K by
gradient descending E as

∆c = −ε
∂E

∂c
(2)

An important feature of our approach is the time scale for the gradient dynamics
which is of the same order than that of the behavior. In this way we have a fast
synaptic dynamics which is consitutive for the behavior.

3 Experiments

In a typical run the controller is initialized in a ”do nothing” state so that in
this phase the feed back strength of the sensorimotor loop is subcritical and
the robot will not muster enough strength to move its limbs. Instead it will
stay in a resting position. The parameter dynamics, eq. 2, in this situation will
change gradually the values of c so that after some time the feed back strength
is large enough so that the dogs starts moving its legs in a more or less random
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fashion. After about one hour or so (real time) the ever increasing sensorimotor
coordination is driving the dog to motions like jumping in many diffferent kinds,
hopping on its hind legs for quite some time, and so on, see the videos.

In order to illsutrate the emerging sensorimotor coordination we use an envi-
ronment consisting of three concentric squares with barriers of increasing height.
After its initial phase of getting into activities the robot rather soon surmounts
the innermost barrier and then lingeres around for quite some time with the
next barrier with a height of about half the dogs clearance. From the video one
sees that it keeps its body low so that it has most of the time contact with the
barrier. During all that time it moves its legs repeatedly forward and backward
over the barrier.

After some time the dog surmounts also this barrier completely and eventu-
ally approaches the outer barrier. It manages quite soon to move its forefoots
over the barrier and then after some time the hind legs, see Fig. 2.

Figure 2: The dog at the third barrier about one hour after starting in the
innermost square. The dog has acquired a rather cautious behavior slowly
probing different possibilities of interacting with the barrier. After some time
the left hind leg is swung onto the barrier and after several minutes it climes
out completely.

The emerging behaviors depend much on the special anatomy. In the above
experiments the dog was supported by a large weightless box on its back pre-
venting it from falling over. In another artifact, the ”hippodog” we have altered
the above dog by giving it a spherical body. In this way we did not need the
artificial backup box. Instead the spherical shape of the body is sufficient that
the robot after falling over manages to get back to its ”working” stance from
nearly any situation. Thus one may the robot leave to itself in the same way
as with its ”ancestor” protected by the invisibel box. In the course of time we
observe similar behaviors as described with the dog above. However due to its
higher mobility, the hippodog has more the tendency to reach a very active,
jumpy regime. In particluar, getting back to its feet is not realised by rolling
over, keeping the legs streched so that they are our of the way. Instead, the
robot gets back to its feet by heavily agitating its legs catapulting itself up by
ground contact with its feet, exploiting the high ground-foot friction.
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Figure 3: The ”hippodog” in full action, above when encountering a wall and
below while in a curve.

4 Discussion

We have applied in the present paper a general paradigm of self-organization to
a dog and hippodog robot. The approach is seen to generate the sensorimotor
coordination necessary for large-scale behavioral modes in a self-organized way.
In particular when surmounting the barrier, the dog has to realize a high degree
of sensorimotor coordination. An important consequence is also derived for the
interplay between the world model and the controller. The ”brain” does not
have any information on the structure and dynamics of the body so that the
world model has to learn this from scratch. This involves the so called cognitive
bootstrapping problem meaning that on the one hand the controls are to be
such that the world model is provided with the necessary informations. On
the other hand these actions require a certain knowledge of the reactions of the
body — information is aquired best by informed actions. The concerted manner
by which both the controller and the world model evolve during the emergence
of the behavioral modes seems to be a good example of this process.

We consider our approach as a novel contribution to the self-orgnization of
complex robotic systems. At the present step of our development the behaviors
although related to the specific bodies and environments are without goal. As
a next step we will realize a so called behavior based reinforcement learning.
When watching the behaving system one often observes behavioral sequences,
for instance when climbing over the barrier, which might be helpful in reaching
a specific goal. The idea is to endorse these with reinforcements in order to
incrementally shape the system into a goal oriented behavior.
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