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Abstract. The paper presents a method to guide the self-organised de-
velopment of behaviours of autonomous robots. In earlier publications
we demonstrated how to use the homeokinesis principle and dynamical
systems theory to obtain self-organised playful but goal-free behaviour.
Now we extend this framework by reinforcement signals. We validate the
mechanisms with two experiment with a spherical robot. The first ex-
periment aims at fast motion, where the robot reaches on average about
twice the speed of a not reinforcement robot. In the second experiment
spinning motion is rewarded and we demonstrate that the robot suc-
cessfully develops pirouettes and curved motion which only rarely occur
among the natural behaviours of the robot.
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1 Introduction

Self-organisation is a key phenomenon in many disciplines ranging from physics
over chemistry to the life sciences and economy. It centres on the spontaneous cre-
ation of patterns in space, time or space-time in complex systems. The dynamical
systems approach to robotics describes robotic behaviour as a spatio-temporal
pattern which is formed in the complex interaction of the robot and its envi-
ronment. Our interest is in developing a systematic approach to the behavioural
self-organisation of such systems.

Self-organisation needs a general paradigm which has to be domain invari-
ant. An exemplary paradigm of such generality is homeostasis meant in the early
days of cybernetics to be a basis of self-organisation. There are a few attempts
to introduce homeostatic mechanisms in robotics, cf. [1, 2]. However, while obvi-
ously helpful in stabilising systems the principle of homeostasis seems of limited
use for the construction of behaviour systems.



One of the authors proposed some time ago homeokinesis as a dynamical
counterpart to homeostasis, see [3, 4]. The idea is that in a behaving system
the components like neurons, sensors, motors or muscles have to cooperate their
activities in a common kinetic state. As with homeostasis this paradigm is not
constructive, because it does not tell how to reach the pertinent state. In partic-
ular it gives no answer to the basic question why the robot should do anything
at all. One solution is the so called time loop error (TLE) see [5, 6] and Sec. 3.2
below. There, the drive for activity has been rooted into the principle itself, and
the creation of activity and the adaptation to the environment are combined into
one single quantity. The development of the robot is driven by the minimisation
of the TLE, which is entirely defined in internal terms of the robot.

Applications with both real [7] and simulated robots have shown many in-
teresting and unexpected behaviours ranging from coiling, hurling and jumping
modes in snake like artifacts, over stable rolling modes of spherical robots [8] to
dogs climbing over walls and the like, see our video page [9]. What we observe in
these experiments are behaviours with high sensorimotor coordination, emerg-
ing in a “playful” exploration of the bodily affordances. However, so far all the
emerging behaviours are contingent, depending on the concrete body and en-
vironmental conditions. Moreover, emerging behaviours are in general transient
which may be viewed as the sequential creation and destruction of behavioural
primitives.

In the present paper we report a first result of guiding self-organisation into
the direction of desired behaviours. In the specific case we consider a spherical
robot which earlier has been demonstrated to develop different rolling modes
of various velocities and modalities [10]. Our aim now is to tell the robot to
move fast or to spin and let self-organisation do the rest. This goal is reached by
modulating the TLE with a conveniently defined reward signal as defined below.
This simple principle is shown to work in a surprisingly effective way and the
presented results may indicate a general approach to influence self-organisation
by general reinforcement signals.

There is a close relationship to the attempts of guiding autonomous learn-
ing by internal reinforcement signals [11] and to task independent learning [12,
13]. The difference is that these approaches work best with discrete state-action
spaces of not too large dimensions. Our approach on the other hand was demon-
strated to work in real time and continuous space with robots of up to 25 active
degrees of freedom [9].

The paper is structured as follows: In the next section we will explain the
used robots, then our general principle for self-organisation is formulated. After
that a short example for exploration is given followed by the main section about
the guiding experiments and finally we close with a discussion and an outlook.

2 Robots

For the experiments we use both a simulated spherical robot called “Sphere”
and a cylindrical robot called “Barrel”, see Fig. 1. The Sphere was inspired orig-



inally by Julius Popp [14]. We constructed the Barrel because it is easier to
analyse and shows clear effects. We used the ODE library (open dynamic engine
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Fig. 1. Simulated spherical robot “Sphere” and cylindrical robot “Barrel”. Left: Sketch
of a the Sphere with three internal sliders. The Barrel has only two sliders; Center:
Picture of the Sphere on the ground; Right: Picture of the Barrel on the ground.

[15]) embedded in our simulation framework [16] for the computer simulations.
The robots are driven by shifting the centre of mass which is realised by shift-
ing internal masses by servo motors, situated on the orthogonal axes (three in
the Sphere an two in the Barrel). The motor values are the target positions of
each of the masses on its axis, symmetric around the centre ranging to half of
the radius. Collisions of these masses are ignored. The servo motors move the
masses by applying forces to them, which are calculated by a PID controller.
This provides more reliable control of the mass positions and stabilises them
against perturbations and centrifugal forces.

The Sphere is equipped with three proprioceptive sensors, which measure the
projections of the axes vectors on the z-axis of the world coordinate system, i.e.
the z-component of each axis vector. The Barrel only has two such sensors.

Both Sphere and Barrel are physical objects with a complicated mapping
of motor to sensor values. In fact, shifting of a mass position will have quite
different consequences due to inertia. The task of the controller is to close the
sensorimotor loop so that a rolling motion of the robot is achieved. This would be
usually done by constructing the controller conveniently. In our case the rolling
motion will emerges from our general principle given below.

3 A General Approach to Self-organisation

We will give here a short review of the general homeokinesis approach. Central
to our approach is the internal perspective, i.e. everything is based on the stream
of the sensor values represented by xt ∈ R

n where xt = (st1, . . . , stn) are the
n sensor values at time t = 0, 1, 2, . . .. The controller is given by a function
K : R

n → R
m mapping sensor values x ∈ R

n to motor values y ∈ R
m

yt = K (xt) . (1)



In the example we have yt = (yt
1, y

t
2, y

t
3)⊤, yt

i being the servo target positions of
the internal masses on the axes. Our controller is adaptive, i.e. it depends on a
set of parameters C ∈ R

c. In the cases considered here the controller is realised
by a one layer neural network defined by the pseudo-linear expression

Ki (x) = g (zi) g (z) = tanh (z) (2)

zi =
∑

j

Cijxj + hi (3)

again all variables at time t. This seems to be overly trivial concerning the set of
behaviours which are observed in the experiments. Please note however, that in
our case the behaviours are generated essentially also by an interplay of neuronal
and synaptic dynamics (Eq. 11) so that our robots are not simple reactive agents.

3.1 World Model and Sensorimotor Dynamics

The robot has a minimum ability of cognition. This is realised by a world model
F : R

n × R
n × R

m → R
n mapping the actions y and previous sensor values

xt, xt−1 of the robot on the new sensor values xt+1, i.e.

xt+1 = F (xt, xt−1, yt) + ξt (4)

where ξt denotes the model error. We make the following ansatz for the world
model F ,

xt+1 = Ayt + S(xt − xt−1) + b+ ξt (5)

where A is a n×mmatrix, S is a n×nmatrix, b, ξ are column vectors. This model
is in contrast to earlier work enhanced by the S-term. The model is trained by
gradient descent on the error EF = ξ⊤ξ as

∆At+1 = εM ξty
⊤

t , ∆St+1 = εM ξt(xt − xt+1)
⊤, ∆bt+1 = εM ξt . (6)

where εM is the learning rate chosen conveniently. Again, the model seems to be
oversimplified. However, model learning is very fast so that the model parameters
change rapidly in time and different world situations are modelled by relearning.
Moreover, the model only has to represent the coarse response of the world to
the actions y of the robot. Behaviour is organised such that this reaction is more
or less predictable. Hence, the world model is sufficient to provide a qualitative
measure of these response properties.

With these notions we may write the dynamics of the sensorimotor loop in
closed form, where ψ denotes the internal model of the sensorimotor loop

xt+1 = ψ (xt, xt−1) + ξt (7)

ψ (xt, xt−1) = AK (xt) + S(xt − xt−1) + b (8)

using Eq. 1 yt = K(xt).



3.2 Realising Self-organisation

As known from physics, self-organisation results from the compromise between
a driving force which amplifies fluctuations and a regulating force which tries to
stabilise the system. In our paradigm the destabilisation is achieved by increasing
the sensitivity of the sensor response induced by the taken actions. Since the
controls (motor values) are based on the current sensor values, increasing the
sensitivity in this sense means amplifying small changes in sensor values over
time which drives the robot towards a chaotic regime.

The counteracting force is obtained from the requirement that the conse-
quences of the taken actions are still predictable. This should keep the robot in
“harmony” with the physics of its body and the environment. It has been shown
in earlier work that these two objectives can be combined in the time loop error
namely finding the input x̂t which is mapped by ψ to the true new sensor values
xt+1, i.e. ‖xt+1 − ψ (x̂t, xt−1)‖ is minimal. We define:

E = v⊤v (9)

where v = x̂t − xt. Using Taylor expansion we get from Eq.7

ξt = Lvt

where ξt is the model error as introduced above and L = ∂ψ/∂xt is the Jacobi
matrix of the sensorimotor dynamics. If L−1exists we can write

E = ξ⊤Q−1ξ (10)

with the positive semidefinite matrix Q = LL⊤.
Using gradient descent the parameter dynamics is

∆ct = −ε
∂Et

∂ct
, ∆ht = −ε

∂Et

∂ht

. (11)

More detail and explicit expressions for the parameter dynamics can be found in
previous publications [7, 5]. Note that the parameter dynamics Eq. 11 is updated
in each time step so that the parameters in practical applications may change on
the behavioural time scale if the update rate ε is chosen conveniently. This means
that the parameter dynamics is constitutive for the behaviour of the robot.

4 Self-organised Sweeping Through Behaviour Space

Let us consider first the case of the Barrel for the demonstration of the ex-
ploratory character of the system. The Barrel is a physical object with strong
inertia effects so that it is not possible for instance to drive it with a pattern
generator emitting a fixed frequency, where the Barrel will normally execute a
rather erratic behaviour. However, if connected to our controller with both the
C and A matrix in a “tabula rasa” condition (equal to the unit matrix), the pa-
rameter dynamics described above will after a short time excite a rolling mode



with the velocity systematically increasing up to a maximum value, after this
the velocity decreases to zero and increases again with inverted sign.

In Fig. 2 one can see a part of the state and parameter dynamics of the
system for one such cycle. Note, that the velocity of the robot can be directly
read from the oscillations of the sensor value x1, high frequency corresponding to
high velocities. The direction however depends on the phase relation between x1

and x2 (not shown). We can analyse the controller matrix C during the course of
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Fig. 2. Dynamics of controller with the Barrel in the time interval 100 to 160 seconds.
The region covers the period where the robot actively slows down and then inverts its
velocity and then rolls backwards with increasing speed. Left: one sensor value x1(t)
and one bias term h1(t); Right: elements of controller matrix C and rotation angle φ.

time. It is obvious from the right plot of Fig. 2 that despite the unit initialisation
C develops into a matrix with scaled SO(2) structure. That means basically that
C is a scaled rotation matrix:

C = u

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

In the experiment the controller matrix C runs through the entire range of
rotation angles φ and hence through the accessible velocities of the robot. The
described behaviour sweeping repeats more or less periodically. It is important
to note that the sweeping effect is a consequence of the interplay between the
state dynamics and the learning dynamics of the threshold values hi see [17] for
details.

5 Guiding Self-organisation

In the previous section we showed that the controller will explore the action
space and in particular the frequency space. In the case of the Sphere with
three dimensional motor and sensor space we observe also frequency sweeping
behaviour, however the situation is more complex since the robot can change



the axis of rotation and so on and so forth. However, in a normal setup, where
the Sphere can move freely, it will exhibit different slow and fast rolling modes.
Behaviours which are well predictable will persist longer than others, but due to
the exploratory character of the controller all modes are transient in nature.

In order to shape the behaviour of the robot, we define a reinforcement signal
given r(t) ∈ R, which can be negative for punishment and positive for reward. In
order to incorporate the reinforcement signal we can modify the error function
with the following formula.

Er = (1 − tanh(r(t)))E (12)

where E is the error defined in Eq. 9.
The effect is based on the fact that E is small if both the prediction error ξ is

small (smooth, stable behaviour) and the dynamics is instable (due to L in the
denominator, see Eq. 10). The latter effect is what makes the system explorative
so that emerging behaviours are transient. The life time of a transient depends
also on the strength of ξ so that transient behaviours which can be well modelled
have a longer life time. The prefactor in the error function (Eq. 12) regulates the
life time of transients as well since it essentially multiplies the learning rate of
the parameter dynamics. Behaviours with small or even negative reinforcement
are left rapidly, whereas large positive reinforcement tends to increase the life
times. The life time of behaviours is maximal if they both are rewarded and
can be well modelled. In the following sections we will demonstrate two different
nominal behaviours, fast motion and spinning.

5.1 Speed Reinforcement

As one possible goal one could want the robot to move fast. In this case the
reinforcement signal is:

r(t) =
1

3
‖vt‖ − 1

where vt is the velocity vector of the robot in world coordinates. In order to avoid
saturation of the tanh function in Eq. 12 the reward is scaled and shifted. For the
average velocity of the normal runs the reward is about zero. For small velocities
the reward is negative and causes a stronger change of behaviour, whereas larger
velocities give a positive reward and due to small changes in the behaviour the
robot stays longer in this regimes.

We conducted 20 experiments with reinforcement and 20 experiments with-
out reinforcement all with random initial conditions, each 60 minutes in simu-
lated real-time on a flat surface without obstacles. The robot also experiences
rolling friction, so that fast rolling really requires constant acceleration. In Fig. 3
the mean velocity for each simulation is plotted and the velocity trace of the
robot for two reinforced and two normal runs are plotted. One can see, espe-
cially at the overall mean, that the mean velocities for the reinforced runs are
significantly larger than the ones of the normal runs. However, since straight and
also fast rolling modes are easy predictable they are also exhibited in the normal



1 3 5 7 9 11 13 15 17 19 all
run

2

4

6

8

10
velocity

 0
 2
 4
 6
 8

 10

 0  500  1000  1500  2000  2500  3000  3500  4000

ve
lo

ci
ty

time in seconds

run
 19

normal

reinforced

 0
 2
 4
 6
 8

 10

ve
lo

ci
ty

run
 12

normal

reinforced

Fig. 3. Left: Mean and std. deviation of the velocity of the Sphere for 20 runs each
60 minutes long with (diamonds/solid line) and without (stars/dotted line) speed re-
inforcement; all denotes the mean and std. deviation over the means of all runs; Right:
Time course of the velocity during 2 runs, i.e. 4 independent simulations (upper: run
12, lower run 19).

runs. The traces illustrate that the robot with reinforcement reaches quicker a
faster motion behaviour and also stays longer in these behaviours.

5.2 Spin Reinforcement

In a different setup we want the robot to drive curves and spin around the z-axis
of the world coordinate system. The reinforcement function looks as follows:

r(t) =
1

3
‖ωz‖ − 1

where ωz is the angular velocity of the robot around the z-axis (in world coor-
dinates). Again the reward is scaled to be in an appropriate interval. Positive
reward can be obtained by rolling in a curved fashion or by entering a pirouette
mode. The latter can be compared to a pirouette done by figure-skaters, with
some initial rotation the masses are moved towards the centre, so that the robot
spins fast at the place. The robot also experiences rolling friction, so that fast
pirouettes are not persistent. We conducted again 20 experiments with reinforce-
ment, each 60 minutes simulated real-time on a flat surface without obstacles. In
Fig. 4 the mean angular velocity ωz for each simulation is plotted and the angu-
lar velocities of the robot in two reinforced and two normal runs are displayed.
In this scenario the difference between the normal runs and the reinforced runs
are tremendous. Nearly all reinforced runs show a very large mean angular ve-
locity. The reason for this drastic difference is that these spinning modes are less
predictable and therefore quickly left in the unreinforced setup. One can see in
the traces, that the robot in a normal setup rarely performs spinning motion,
whereas the reinforced robot, performs after some time of exploration very fast
spinning motions, which are persistent for several minutes. Note, that spinning
at the place (high peeks) is not persistent because of friction. So the robot tends
to gain some speed by rolling along the ground.
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Fig. 4. Left: Mean and std. deviation of the angular velocity ωz of the Sphere for 20
runs each 60 minutes long with (diamonds/solid line) and without (stars/dotted line)
spin reinforcement; Right: Time course of the angular velocity during 2 runs, i.e. 4
independent simulations (upper: run 2, lower run 12).

6 Discussion

We demonstrated in the present paper a simple method by which the otherwise
freely self-organised behaviour, generated by the general homeokinesis paradigm,
can be guided towards desired behaviours. First we studied an emergent ex-
ploratory behaviour in form of a velocity sweep using a two degree of freedom
rolling barrel robot. This shows that different behaviours are exhibited in course
of time. We integrated a reinforcement signal defined by an external observer
into the learning rule of the controller. In essence the original time loop error is
multiplied by a strength factor, obtained from the reinforcement signal. The ap-
proach is applied to a spherical robot in two scenarios, fast motion reinforcement
and spin reinforcement. In both cases the performance was significantly increased
and it was shown that the robot was guided towards rewarded behaviours. Nev-
ertheless, the exploratory character of the paradigm stays still intact.

We consider our approach as a contribution to autonomous robot develop-
ment [18, 19] and see potential applications in this field. With the presented rein-
forcement mechanism we are now able to guide the development of behaviours.
However, in the current setup the internal world model will forget past be-
haviours, so that there is no long term effect of the reinforcement. This can be
achieved with multiple internal models and will be subject of a future paper.
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