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Abstract

The self-organization of behavior is both a striking phenomenon in living beings and a challenging

objective for autonomous robots. In our earlier work we introduced homeokinesis – the dynamical pendant

of homeostasis – as a general domain invariant principle for behavioral self-creation. The present paper

continues these investigations under a more pragmatic aspect. We start from the formulation of two

requirements to the behavior namely that actions are such that (i) they are maximally sensitive reactions

to the sensor values and that (ii) the consequences of the actions taken are still predictable. We show how

this general statement can be formulated into a concrete error function E measuring the distance between

the current and the ideal behavior formulated by the requirements. Gradient descending E produces a

self-regulating dynamical system. Mathematical arguments show that the robot behaviors emerging from

this are both explorative and sensitive to the environment. From the general principle simple learning

rules are derived for the neurons of a closed loop robot controller. These learning rules are shown in a

simple application with a physical robot to realize a self-learning autonomous robot which can survive in

a sufficiently simple world without any further external help. In particular we demonstrate that sensors

are automatically integrated according to their response strength as soon as they deliver a signal to the

controller. Moreover the system also can deal with the problem of a rapid change in the properties of the

sensors.

1 Introduction

The central interest of our work is the self-organized acquisition of behaviors for autonomous robots. Our

work is based on the belief that true autonomy must involve the phenomenon of emergence. Before giving

some ideas how this could be realized in the robotic domain let us first illustrate the goal in a realistic case.

Consider a robot with a neural network controller with synaptic weights initially in the tabula rasa condition.

So there is no reaction of the robot to its sensor values and activities, if present at all, are only stochastic

ones. The robot is to be in an environment with static and possibly also dynamic objects. The task now is to

find an objective function for the adaptation of the controller which is entirely internal to the robot driving
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the parameters so that the robot will start acting and while acting to explore and develop its perception of

the world and of object related behavior.

Our work aims at finding general principles for the realization of this program. In our earlier work we

started from some basic system theoretic ideas which find their roots in the old cybernetics tradition combined

with more recent knowledge from the theory of dynamical systems. A brief reference to these and other related

work will be given below. In the present paper we give a reformulation of this principle from a more pragmatic

perspective. The principle to be put forward in the present paper is based on two considerations. On the one

hand we want the robot to adapt to its environment. This is done by endowing the robot with a minimum

of cognition in terms of a world model which allows the robot to predict the consequences of its actions in

a narrow time horizon at least. In the present work this will be realized simply by a parameterized function

approximator. Then to behave in a predictable way is our first requirement to the behavior of the robot.

On the other hand we require that the robot chooses its actions as the most sensible reaction to its sensor

values. It is this latter point which brings the robot to activity as will be seen explicitly below. The behavior

is emerging as a compromise between these two opposing tendencies.

One of the results of the present paper consists in showing that this extremely simple and general principle

can be formulated into a concrete objective for the adaptation of the robot. Moreover it will also be seen that

the parameter dynamics (learning rules) for the robot derived from this principle are both rather simple and

biologically plausible. Yet the emerging behaviors are by far not trivial. Before presenting these findings in

Sec. 3 we will in Sec. 2.1 present our closed-loop control paradigm by considering an elementary SM loop. This

serves the purpose of introducing the dynamical system description of the sensorimotor loop and discussing

special effects of the noise and in particular introduce the concept of hysteretic control which will play a central

role throughout the paper.

The principle can be translated into concrete learning rules for the synapses of the controller neurons. In

the present paper we want to investigate these learning rules in a simple case and show that they generate

an explorative behavior of the robot which is highly sensitive to the reactions from the environment (by the

frequency effect, see Sec. 4.2.2 below). Control realized on the basis of the general principle is achieved in tight

sensor motor coupling meaning that all sensors responding to the motor activities are automatically integrated

into the generation of the motor command. This will be presented in the subsequent sections.

In concluding this introduction we will give a few remarks on related work. Homeostasis as introduced by

Cannon [Cannon, 1939] and later Ashby [Ashby, 1954] is a basic incentive when looking for general principles

explaining the functionality of complex self-organizing biological systems. The principle of homeostasis has

recently received new attention in neurosciences. In particular in a series of papers by Turrigiano and others,

cf. [Turrigiano and Nelson, 2000] have considered the role of various homeostatic mechanisms serving the

purpose of counterbalancing the destabilizing effect of Hebbian learning. In [Turrigiano and Nelson, 2004] the

idea is that there are specific homeostatic plasticity mechanisms that dynamically adjust synaptic strengths in

such a way that the stability of the network is sustained, see also [Feldman, 2002]. There are a few attempts

to introduce homeostatic mechanisms in robotics, cf. [Paolo, 2003], [Williams, 2004] but so far the benefit of

these approaches is not really established.
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While obviously helpful in stabilizing systems the principle of homeostasis seems not well suited for the

construction of behavior systems. In fact the aim of such a system is not stasis but a common kinetic regime

shared by the constituents of the system in order to produce the behavior in the world. We introduced

homeokinesis [Der et al., 2002], [Der et al., 1999], [Der, 2001] as the dynamical pendant of homeostasis.

The behaviors emerging from such general principles are contingent. This means that they depend strongly

on the specific initial and environmental conditions and on the specific physics of the robot. In this way

our work is also a contribution to the fostering and further understanding of the role of embodiment in

the creation of artificial beings, see Refs. [Pfeifer and Scheier, 1999], [Lichtensteiger and Pfeifer, 2002] and

others. The focusing on behavior as arising from an entirely internal perspective is also an objective of the

constructivistic approach [von Glasersfeld, 1995] and of autopoiesis, cf. [Maturana and Varela, 1979] which

underlines the internal perspective of the agent. Our contribution to these developments is to provide a

concrete mathematically grounded approach for the realization of these ideas in real robots.

2 Closed-loop control in the sensorimotor loop

Throughout the paper we consider velocity control of a mobile robot under the closed loop control paradigm.

This means that the velocity of the wheels is directly derived from the sensor values, in particular those of the

wheel counters itself. In order to discuss the peculiarities of this approach let us consider at first a very simple

system.

2.1 An elementary sensorimotor loop

Let us consider a closed-loop velocity control of a robot with the sensorimotor loop closed via the wheels alone.

For the sake of simplicity we consider the one-dimensional case, i.e. the robot can move only along a straight

line. Our controller consists of a single leaky-integrator neuron under the rate coding paradigm.

2.1.1 Dynamics of the loop

The membrane potential z is updated in the time step t . . . t+ 1 as

τ∆zt = −zt + cxt+1 +H (1)

where the input is the true wheel velocity x as measured by the wheel counter and H being a bias (threshold).

The update is carried out when the new sensor value xt+1 arrives. The output of the neuron

yt = tanh (zt) (2)

is the target wheel velocity of the robot. The true wheel velocity xt+1 as read back by the wheel counter may

be assumed to

xt+1 = ayt + ξt (3)

where the parameter a is a hardware constant and ξ incorporates all effects due to slip, friction, discretization

noise and so on which make the true velocity deviate from the model assumption xt+1 = ayt. The constant a
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(the response strength of the channel) can be learned by minimizing the error

E = (xt+1 − ayt)
2 (4)

for samples (xt+1, yt) obtained on-line in each time step t = 0, 1, . . ..

Using eq. 1 we find the closed dynamical system

τ∆zt = −zt + ca tanh (zt) +H + cξt (5)

describing the time evolution of the membrane potential of the robot. Together with eq. 2 this dynamics

completely defines the behavior of the robot.

The concrete behavior obviously depends essentially on the values of c and H. The essential features of this

dynamics are illustrated best by using an alternative view of the dynamics of eq. 5 obtained by considering

the update of z as a gradient descent on a potential V

τ∆zt = − ∂

∂zt
V (zt) + cξt (6)

Using
∂

∂z
ln(cosh(z)) = tanh(z) (7)

we find that

V (z) = −R ln(cosh(z)) +
z2

2
+Hz (8)

with R = ca being the feed-back strength in the sensorimotor loop. As usual the gradient dynamics of eq. 6

may be visualized by that of a sphere sliding down on the walls of a vessel filled with a viscous fluid, see Fig.

1. In our case we may use the small z approximation tanh z = z − z3/3 to get the more simple expression

V (z) =
1
2
(1−R)z2 +

1
12
Rz4 −Hz (9)

for the potential which is well known from many branches of physics and dynamical systems theory.

Figure 1: The state dynamics of the sensorimotor loop can be considered as a gradient descent on the potential

V (z), assuming H = 0 here. Maxima of the potential correspond to instable fixed points, minima to stable

ones. The figure shows the potential with R < 1 (left) and R > 1 (right) where it is a double well potential

with two stable and one instable fixed point. Each sphere represents a fixed point of the system.

The fixed points of the system correspond to the extrema of the potential, the stable fixed points being at

the minima of the potential. In Fig. 1 (left) the potential is plotted for R < 1 where the fixed point at z∗ = 0
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is indicated by the sphere. With increasing R we have a pitchfork bifurcation at R = 1 and for R > 1 we get

a bistable system, i.e. we have one instable fixed point at z∗ = 0 and two stable fixed points at

z∗ = ± 2

√
3(R− 1)

R
(10)

as indicated by the spheres in the double well potential in Fig. 1 (right). The deviation of this approximate

value from that for the exact potential of eq. 8 is in the region of a few percent in the pertinent (see below)

region 1 < R < 1.3.

2.1.2 Peculiarities of closed-loop control

As described above, the velocity is not given by some external description but is leveling itself as a result of

the dynamics of eq. 5. In particular if R > 1 we may initialize the robot with any starting velocity and after

some time its velocity will approach one of the two possible fixed point values, i.e. the robot will move either

forward or backward with constant velocity. Which of the fixed points is realized depends on the starting value

and possibly the noise.

One of the benefits of this closed loop control system (under the assumption R > Rc, H being 0) consists

in the following.

Figure 2: The collision with an obstacle in the potential picture of the dynamics. The robot was moving

forward, i.e. the state was at the r.h.s (z > 0) minimum of the double well potential. The impenetrable object

corresponds to an infinitely steep rise in the potential so that the state is bound to move to the left hand

minimum and the robot starts moving backward.

When colliding with an obstacle the wheels are blocked, so that x = 0 and z decays. If there is some

(small) additional noise in the dynamics of the membrane potential z it will fluctuate around zero. These

fluctuations can be amplified if they are of the right sign, i.e. if the robot is moving away form the obstacle.

Hence after a short time the robot is found to move away from the obstacle, cf. Figs. 2 and 3. We may say

that in this elementary sense the robot is able to survive. This has been corroborated nicely in practice with

different kinds of robots.

2.1.3 The role of the bias. Hysteresis.

In the case of finite H the fixed points and hence the velocity of the robot are obtained from

z = R tanh (z) +H
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Figure 3: Neuron output y of the closed loop control system (with feed-back strength R > Rc) before and

after a collision with an obstacle obtained from an experiment with a real Khepera robot (bottom). Above the

neuron output curve the corresponding fixed points of the system are represented by a sphere on the potential

V (z) (top). Before the collision the system is in the fixed point with positive sign (robot drives forward).

During step 1185 to 1215 the robot is kept at the instable fixed point z = 0. Around step 1215 the robot starts

moving backward because of the noise amplification effect.

so that they also depend on the value of H and there is a hysteresis effect w.r.t the change of H for the case

that R > 1. The hysteresis effect results from the fact that there is a region −Hc < H < Hc of bistability.

Outside we have only a single FP which has the same sign as H. When moving the value of H from outside

into the region of bistability the FP realized depends on which side of the outer region one is coming from,

see the Fig. 4 for details. The dependence of the system from both parameters H and R can be seen in Fig 5.

With R < 1 there is only one fixed point z = 0, but with R > 1 we see the hysteresis effect in the (z,H) space

which is the larger the larger R.

2.1.4 Quasi-equilibrium

In many cases of practical interest one may assume that the dynamics of the membrane potential z is fast as

compared to the changes in the sensor values so that ∆z is small in eq. 1 and we may approximately write

zt = cxt +H

so that the controller output y is a direct function of the sensor values. Under this assumption we get a closed

update rule for the sensor values as

xt+1 = ag (cxt +H) + ξt

By the same token we may also write

zt+1 = cag (zt) +H + cξt

We will work with these approximations below.
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Figure 4: The hysteresis cycle. The diagrams show the stages of one hysteresis cycle starting from H = 0

(diagram (1)) with the state at z > 0 as represented by the sphere. Decreasing H leads to a deepening of

the left minimum, while the right minimum gets more flat, but the state remains at the minimum at z > 0,

see diagram (2). If H = −Hc both the maximum at z = 0 and the right minimum disappear so that the

system shifts to the left minimum of the potential (3). Increasing H until H = 0 brings us back to the initial

situation with the difference that the system changed to the fixed point with negative sign, cf. diagram (4,5).

The diagrams (6) and (7) show the switching from the minima at z < 0 to the minima at z > 0 by increasing

H. By decreasing H until H = 0 the hysteresis cycle is finished, see diagram (8,9).

Figure 5: State and parameter dynamics of the system for adiabatic changes. With R < 1 there is only one

fixed point z = 0, but with R > 1 we see the hysteresis effect in the (z,H) space which is the larger the larger

R.
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2.2 Sensorimotor loop in the general case

In the general case we have a vector of sensor values xt ∈ Rn at the discrete instants of time t = 0, 1, 2, .... By

way of example we may consider the Khepera robot where

x = (vl, vr, IR1, ..., IR8)
T (11)

with vl and vr are the wheel velocities of the left and right wheel, respectively, as measured by the wheel

counters, IRi is the value of the infrared sensor i with 0 ≤ IRi ≤ 1. Closed loop control means that the

controller is given by a function K : Rn → Rm mapping sensor values x ∈ Rn to motor values y ∈ Rm

y = K (x)

In the example we have y = (y1, y2)
T , yi being the target velocity of wheel i. Our controller is to be adaptive,

i.e. it depends on a set of parameters c ∈ RC .

2.2.1 World model and sensorimotor dynamics

We assume that our robot has a minimum ability for cognition. This is realized by a world model F :

Rn ×Rm → Rn mapping the actions y of the robot on the new sensor values, i.e.

xt+1 = F (xt, yt) + ξt (12)

where ξt is the model error. The model F can be learned by the robot using any learning algorithm of

supervised learning. Let the model be a parameterized function (neural net) with parameters a ∈ RM . The

parameters a can be adapted by gradient descending the error function based on ξ. The structure of the model

and the learning procedure define the passive cognitive abilities of the robot.

With these notions we may write the dynamics of the sensorimotor loop in the closed form

xt+1 = ψ (xt) + ξt (13)

where

ψ (xt) = F (xt,K(xt))

The function ψ can be visualized as a time series predictor for the time series of the sensor values xt.

By way of example we may consider the elementary SM loop of Sec. 2.1 where now

K (x) = g (cx+H)

with the controller parameters c and H (the parameter (bias) H in the example is always considered explicitly

because its role is more that of an additional internal state of the neuron)

F (x, y) = ay

and

ψ (x) = ag (cx+H)

so that the sensorimotor dynamics is

xt+1 = ag (cxt +H) + ξt
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2.2.2 The dynamical systems approach to robot control

The time discrete stochastical dynamic system eq. 13 is a mathematical description of the sensorimotor dy-

namics. Our approach is based on the dynamical systems formulation and tends to adapt the controller so

that the robot behavior which is the manifestation of the dynamical system has the desired properties. Using

the dynamical system as a substrate for the robot behavior have been considered by several authors under

varying contexts and with varying success. Related to our subject is the work by Jun Tani, cf. [Tani, 2004],

[Tani and Ito, 2003] and of people around Gregor Schoener, [G. Schöner and Engels, 1995], [Steinhage, 1997],

[Hock et al., 2003] An elaborate behavior based design system has been developed in the context of dual dy-

namics. The system has a layered structure of behavioral subsystems realized by ordinary differential equations,

each layer having its own time constant. Interactions between the subsystems is realized by specific interaction

and ”bifurcation-inducing” mechanisms which have to be designed by hand, cf. [Bredenfeld et al., 2001].

The authors quoted have mainly tried to design dynamical systems such that they realize prescribed tasks,

the smooth navigation through a cluttered environment being a prominent example. The main difference with

our paper is that we design an objective for the self-regulation of the dynamical system without a concrete

task given from outside. The behaviors emerging are therefore contingent but the interesting point is that

in the interplay between destabilizing the sensorimotor dynamics and staying nevertheless predictable is the

route towards the emergence of environment related behavior.

3 Principles of self-regulation

We are now going to find an objective for the adaptation of our robot based on entirely intrinsic principles.

Before doing so we formulate the common approach to adaptive systems.

3.1 Adaptive systems

The dynamics depends on the parameters c of the controller K. Changing c changes the behavior of the system.

A system is adaptive if there is an objective function measuring the distance from the current to a desired

behavior. (This might be as abstract as measuring the survival properties of the system). One realization of

the adaptation is a parameter dynamics as gradient flow

∆ct = −εS (xt, ct)

where

S =
∂

∂c
E

so that we have the combined dynamics

xt+1 = ψ (xt, ct) + ξt

ct+1 = ct − εS (xt, ct) (14)

The problem of learning in robotics consists in finding this objective E for the generation of a desired

behavior. In the usual approach to adaptive system the function E is provided from outside and is to be
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designed such that the system so to say establishes the desired reference to the environment. We will consider

so called self-referential systems, i.e. systems for which the objective function is derived from the dynamics

of the system itself. We will present in the following one such objective in an explicit way. The aim of the

present work is to study these systems and derive some general properties of their dynamics.

3.2 Being sensitive but predictable – the paradigm of controlled acuteness

Of course there are many different paradigms to define a self-referential system. One idea is to reduce the

influence of the noise, i.e. the unpredictable part of the behavior. Then the predictability of the future would

be the central objective of the adaptation of the behavior. However it is clear that the best realization of this

paradigm is given with a ”do nothing” behavior. If cognition is to understand what happens, then cognition

with this kind of behavior is optimal (in a static world at least). In order to get a robot with an internal

drive for activity we require in addition that the reactions of the robot to its sensor values are qualified by a

maximum sensitivity.

We claim that one can combine the two requirements by introducing as a first step virtual sensor values x̂

defined by

‖xt+1 − ψ (x̂t)‖ = min (15)

with a conveniently defined norm. Explicitly the shift v = vt = x̂t − xt is

vt = arg min
u
‖xt+1 − ψ (xt + u)‖ (16)

The shift is a measure of the sensitivity of the function ψ towards changes in its arguments. In fact, using

xt+1 = ψ (xt) + ξ in eq. 16 we immediately see that the shift necessary to achieve the change ξ in the value

(output) of the function ψ is the smaller the more sensitively ψ reacts to changes in its arguments (inputs).

This will be discussed on a more formal basis in Sec. 3.3 below.

Obviously v is small if both ξ (which measures the predictability) is small and the function ψ is sensitive.

Hence the two aims of getting a robot with both highly sensitive reactions and predictability of behavior

amounts to the requirement that the shift necessary to produce the new sensor values is as small as possible.

We may consequently define

E = ‖v‖2 (17)

as our objective function measuring the deviation between the current and the desired behavior. We use the

Euclidean norm

‖v‖2 = vT v = Tr vvT

where Tr is the trace of a matrix.

Gradient descending E yields to the parameter dynamics

∆p = −ε∂E
∂p

(x, c) (18)

where p is any of the parameters (controller and world model) on which ψ depends. Note that the state

dynamics eq. 13 and the parameter dynamics eq. 18 run concomitantly. Taking into account only the
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parameters c of the controller (assuming the world model being learned) we have a combined dynamics in the

space Rn ×Rc, i.e. we have to consider the dynamical system

xt+1 = ψ (xt, ct) + ξt

ct+1 = ct − ε
∂E

∂ct
(xt, ct) (19)

This system may be called self-referential since the parameter dynamics is induced by the system dynamics as

represented by ψ (i.e. by the current knowledge of the system dynamics) alone.

3.3 Explicit expressions

The definition eq. 15 of the shift may be written as the requirement

ψ (x) + ξ = ψ (x+ v) (20)

If v is small we may use Taylor expansion to write

ψ (x+ v) = ψ (x) + L (x) v (21)

where the Jacobian matrix L is defined as

Lij =
∂

∂xj
ψi (x)

Using eq. 21 in eq. 20 we find

v = L−1 (x) ξ

and obtaining v means now ”only” to find the inverse of the matrix L provided the latter exists.

Eq. 17 may now be written

E =
∥∥L−1

∥∥2

D

where we introduced the weighted matrix norm

‖A‖2D = Tr
(
ATAD

)
with

Dij = ξiξj

being the matrix of correlations between the model errors (noise) in the different sensoric channels.

The explicit expression displays the main properties of the gradient flow in the parameter space induced

by the gradient descent on E. On the one hand E will be small if the vector ξ = xt+1 − ψ (xt) is small, i.e.

if the robot behaves in the most predictable way. On the other hand the Jacobian matrix determines the

local stability of the dynamical system defined by ψ. With L in the denominator of E the gradient descent

will destabilize the sensorimotor dynamics. This is tantamount to an increase in the sensitivity of the system

towards its sensor values since the Jacobian measures also the response strength of the function ψ with respect

to changes in its arguments. From these simple arguments it can already be anticipated that bestowing the

sensorimotor dynamics with a gradient flow in parameter space driven by E will produce a system with very

rich properties.
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4 Parameter dynamics in the elementary sensorimotor loop

Now let us return to the simple case presented in Sec. 2.1. We have x ∈ R1 and F (x, y) = ay so that

ψ (x) = ag (z)

with z = cx+H (displaying the parameter H explicitly again). The Jacobian is

L = ψ′ (x) = Rg′ (z)

with R = ca being the feed-back strength in the sensorimotor loop.

4.1 The parameter dynamics

The error E boils down to

E =
ξ2

L2

The derivative is written as
∂E

∂p
= −2

E

L

∂L

∂p
− 2
L
ξ
∂ψ

∂p

where p ∈ {c,H}. We assume in the present paper that ξ = 0 so that the ξ term does not contribute to

the parameter dynamics in the average over the noise. Using L > 0 (see below) and g′′ = −2gg′ in the case

g (z) = tanh (z) together with Rg (z) = z −H at the fixed point we obtain

∆c = µa− 2µx (z −H)

∆H = −2µ (z −H) (22)

where

µ = 2εE/R

(R will be seen to be positive below) is a modified update (learning) rate, and g′ = tanh′ (z) = 1− tanh2 (z).

We will see below that the system goes into a limit cycle in the x,H space. Averaging over a period and using

that the amplitude of H is much smaller than that of z we may simplify the parameter dynamics further to

∆c = µa− 2µxz

∆H = −2µz (23)

The parameter dynamics is to be used concomitantly with the z dynamics so that the parameters c and

H in eqs. 1 or 5 are now time dependent. As we will see below the time scale for the change of in particular

H is on the level of the behavior so that in other words the behavior is essentially controlled by the dynamics

of H. This is different from the usual paradigm of learning where we have a learning and a performance

phase or where there is a separation of time scales for learning and behaving. It may be of interest that

behavior control by the synaptic dynamics has been obtained also in the framework of evolutionary robotics,

cf. [Nolfi and Floreano, 2000].
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4.2 Properties

We have been using the parameter dynamics given by eq. 23 in simulations and with real robots for quite

some time. Of the many interesting properties we have encountered in these experiments we will discuss the

following.

4.2.1 No bias

Let us consider the case H = 0 first. The dynamics for c, eq. 23, consists of the anti-Hebbian term given by

the product of the input into the synapse times the membrane potential of the neuron both quantities being

felt directly at the synapse. The driving term µa is given by the response strength a of the sensor x to the

output of the controller. This term can also be obtained empirically by modulating the neuron output with a

periodic perturbation and filtering this signal from the sensor values, hence we may say that the learning rule

is a purely local one.

Figure 6: The increase of the feed-back strength R (upper curve) due to the learning procedure. Initially the

rise is very steep due to the fact that L is in the denominator. If R is above the critical value the target wheel

velocity (lower curve) increases with the sign (direction of motion) determined by the noise amplification effect.

In order to discuss the effects of the two terms we assume that we start the system with R < 1 (in the

tabula rasa condition, i.e. 0 < R << 1, e.g.) so that z fluctuates around zero, i.e. the robot executes a

random walk. With z ≈ 0 the anti-Hebbian term is negligible and the driving term is seen to increase the

value of R since ∆R = ∆(ca) = µa2, see Fig. 6. Once R > 1 is reached the velocity increases exponentially

so that the robot starts moving. With y2 > 0 the anti-Hebbian term comes into play and the increase of c

is stopped if a = 2zx is reached, i.e. if 1 = 2z tanh z or 1 = 2Ry2 which happens at R ≈ 1.2 corresponding

to y ≈ ±0.65. The direction of the robot (sign of the velocity) is arising from a spontaneous breaking of the

x→ −x symmetry inherent in the complete (i.e. parameter and state) dynamics. Note that R is the feed-back

strength in the sensorimotor loop so that we observe a self-regulation of the system to a feed-back strength

which is slightly supercritical.

An interesting phenomenon is observed if the robot hits an obstacle. We have seen above that with R

fixed the robot will invert the velocity after some time. In the present case this is accompanied by an increase
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in the feed-back strength R due to the fact that with x = 0 it is only the driving term which is active in

the parameter dynamics. Increasing R means increasing the noise amplification effect so that the robot starts

being more active at the wall contact, see Fig. 7 for details.

Figure 7: Time course of the synaptic strength c (a) during wall contact of the robot as indicated by the

infrared sensors (c). c and hence the feed-back strength is seen to increase during the contact and to decrease

again when moving away form the obstacle due to the anti-Hebbian term in the parameter dynamics. The

increase in the feed-back strength increases the noise amplification and by this the escape probability, see the

y curve (b).

4.2.2 Self-induced search

With H 6= 0 there is a hysteresis effect w.r.t the change of H as discussed above. Eq. 23 shows that the

change of H always aims at destabilizing the actual fixed point of the system (∆H ∼ −z). Hence the system

executes the hysteresis cycle shown in Fig. 4. But the system does not exactly reach the fixed points because

of the rapid change of H (as compared to the other parameters). Thus the shape in Fig. 5 is washed-out

and it is easily seen that a smooth limit cycle behavior is obtained. The value of c is seen to slightly oscillate

with twice the H frequency, but in the average the strength R of R is self-regulating again to the slightly

supercritical value of R ≈ 1.2, cf. Fig. 8. We may consider the transition to the limit cycle as a self-induced

Hopf bifurcation in the x,H space where the value of c is self-regulating to the regime slightly above the

bifurcation point.

The frequency of the limit cycle oscillation is modulated by the strength of the noise ξ2, which we call

the frequency effect. With varying noise strength the robot will execute an irregular searching behavior, i.e.

the robot will move forward for some time then reverse velocity and move backwards and so on. The most

interesting property however is observed when the robot collides with some obstacle so that the wheels get

blocked. Then ξ2 in eq. 22 is very large so that the rate of change of H largely increases and the robot nearly

immediately will reverse its velocity, see Fig. 9. In this way the parameter dynamics may be said to create an

explorative behavior which stays sensitive to (perturbations by) the environment.

In the applications with both wheels driven by self-regulating neurons the robot is found to explore the
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Figure 8: The increase and self-regulation of the feed-back strength R (a) due to the learning procedure. c

and therefore R is oscillating with twice the frequency of H (c) which is determined by the strength of the

noise ξ2. The phase shift between H and y (b) is a consequence of the hysteresis effect. At about step 400 the

Hopf bifurcation takes place.

Figure 9: Time course of the response-strength R (a) and bias H (c) during wall contact as indicated by the

infrared sensor (b). When the wheels get blocked the model error ξ2 is very large so that the rate of change

of H largely increases and the target wheel velocity y (d) is nearly immediately reversed.
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world without getting stuck in corners or at other obstacles, see the videos [Der, 2003]. It should be noted

that these properties are not the performance of the trained neuron but instead result from the interplay of

state and parameter dynamics, i.e. the concomitant effects of eqs. 1 and 22.

5 Several channels

Let us now consider the case of one controller neuron with several sensoric channels. The sensor values xi may

now depend in a more general form on the value of y. In the present paper we stipulate as in the one-channel

case simple proportionality. i.e. we write the sensorimotor loop as

xi,t+1 = aiyt + ξt

where the deterministic part may be considered as the model and the ”noise” ξ is the model error, the constants

ai being learned online. Our aim is to find the properties of the parameter dynamics in this case. The update

rule for the membrane potential is

τ∆z = −z +
∑

i

cixi +H (24)

with the fixed point being given by the solution of

z = R tanh (z) +H (25)

(we assume ξi = 0 for all channels) where R

R =
∑

i

ciai

is the overall feed-back strength in the sensorimotor loop.

Using as before yt = g (zt) we get under the quasi-equilibrium assumption the loop dynamics as

xt+1 = ψ (xt) + ξt

where now x ∈ Rn and

ψi (x) = aig (cx+H) (26)

so that the Jacobian L is

Lij = aicjg
′ (z) (27)

Our general principle needs some customizing since the shift v is not uniquely defined. Formally this is

seen by the fact that L is not invertible. We may remove the ambiguity by making an assumption on the

direction of v. In the present paper we stipulate that v is in the direction of a. The reason behind this is that

the inputs x should be produced by the deterministic part of the SM dynamics. Hence x is proportional to a

apart from the noise. Using the approximation ξ = Lv and writing v = uâ (where â2 = 1) we obtain

ξ = ug′Râ

Considering the projection of ξ on a as the relevant property of the noise we obtain our new objective function

as

E = u2
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where

u2 =
ξ2 cos2 φ

Λ2

where φ is the angle between the vectors ξ and a and

Λ = g′ (z)R

Following the lines of Sec. 4.1 we obtain the following rules for the dynamics of the parameters

∆ci = µai − 2µzxi − γµci (28)

∆H = −2µz

where µ = 2εu2/R and γ (which is small) was introduced in order to produce a (weak) decay of the weights.

This is necessary in order to damp that part of the initial conditions which is orthogonal to a. We again

find that the change of ci is given by a driving together with an anti-Hebbian term which can be interpreted

biologically.

In order to analyze the parameter dynamics we start with an initializing of c such that the feed-back

strength is 0 < R << 1. Then y is fluctuating about 0 and the driving term in the learning dynamics produces

∆ci = µai so that ∆ (ciai) = µa2
i and hence ∆R = µa2. Obviously the overall feed-back strength R increases

with channels of higher response strength |ai| being favored. Once R exceeds the critical value Rc = 1, the

anti-Hebbian term comes into play. The parameter dynamics becomes stationary (H = 0) if

γci =
(
1− 2Ry2

)
ai

or

R =
1

γ/a2 + 2y2
=

a2

γ + 2x2
(29)

so that

ci = αai

Obviously the ci reach values so that all sensors are integrated into the sensorimotor loop according to their

response strength.

The value of α is obtained as

α =
1

γ + 2x2
=
R

a2

Using the fixed point equation in the form y = tanh (Ry) together with eq. 29 we get

y = tanh
(

y

γ/a2 + 2y2

)
The position of the fixed point is seen easily to depend smoothly on the value of γ/a2 for not too large γ. For

instance the fixed point is at y = 0.58 and R = 1.15 if γ/a2 = 0.2 which is only slightly lower as compared

to y = 0.65 and R = 1.19 corresponding to γ → 0 and also to the one-channel case. The inclusion of the H

dynamics will again produce the limit cycle behavior but the preceding results will stay valid in the average

over (at least) one period.
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Both this simple analysis and computer simulations readily show that the system is self-regulating again

into the limit cycle oscillations independently on the number of channels and the values of ai, since the feed-

back strength is determined again by R alone. Hence we may say that the irregular, environment-sensitive

explorative behavior is reproduced also in the case of many channels where each channel is related to a single

sensor. The difference now is that the velocity control of the robot is based on the inputs of all sensors. This

in particular means that it will respond to perturbations ξi in each channel i in a channel specific manner, i.e.

it is most sensitive to channels with a high response factor. This may be of interest in practical applications.

6 Switching sensor activity

One point of interest in the present paper is with the switching activity and characteristics of sensors. In the

above considerations we have assumed that the sensor response is essentially proportional to the velocity of

the robot. This is not the case for a proximity sensor. In this case we could use a preprocessing and consider

the change of the sensor value in the time step as one of our xi. However the problem is that this sensor

characteristics is valid only if the sensor is ”on”, i.e. the obstacle is in the reach of the sensor. Fig. 10 shows

a robotic system in two different situations. In the left part the wheel sensor shows a larger response strength

than the infrared sensor and therefore obtains a larger synaptic strength as indicated by the thickness of the

arrows from the robot sensors to the controller. The right part depicts a ”close to collision” situation where

the infrared response is larger than that of the wheel sensor. Another point of interest of the present approach

Figure 10: Sensorimotor loop closed over wheel and infrared sensor. If the response factor a of the wheel

sensor is larger the synaptic strength of the input from this sensor is greater than from the infrared sensor,

as represented by the thickness of the arrows from robot sensors to the controller (left). If in a ”close to

collision” situation the infrared sensor shows a greater response than the wheel sensor, the synaptic strength

corresponding to the infrared sensor will be larger (right).

is the case that new sensors are installed for some time or that sensors temporarily break down. In any case

our parameter dynamics will be seen to include the temporary switching on and off of sensors.

In principle the parameter dynamics of eq. 28 may well cope with the situation. Assume we switch on

a new sensor k and assume the value of the coupling ck = 0. Then in the beginning we have ∆ (ckak) =

εξ2a2
k

(
1− 2Ry2

)
> 0 since the damping term −γµckak in this channel is negligible as compared to the other

channels, because of the small value of ck. Obviously the value of ckak is rising and this procedure will stop

only if ck = αak is reached. Concomitantly the couplings of the other sensors and hence the value of α is

readjusted so that the global balance is reestablished. Hence a newly switched on sensor is automatically

integrated into the sensorimotor loop. We may also see that the switch-off situation is dealt with in the same
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automatic fashion.

The problem however is that the processes of readjusting the coupling vector c takes some time. In practical

applications (see below) the switching on and off of sensors may take place in very short time intervals. It is

therefore of interest not to relearn the couplings but instead to have a kind of long-term memory where the

couplings are stored and are read out appropriately. This is possible either on the basis of direct information

on the state of the sensors or on context information which is able of qualifying the sensor situation. We will

study this case in the following.

7 Experiments with a physical Khepera robot

Our experiments have been chosen to show in a simple case that the derived learning rules generate an

explorative behavior of the robot which is highly sensitive to the reactions from the environment. This means

that it will move more or less tentatively as long as the knowledge is small, i.e. the modeling error is large

(the ai are still erroneous) and with increasing knowledge a more and more explorative behavior will originate,

while it stays sensitive to the environment. Furthermore we want to investigate the situation of switching

sensor activities. We therefore consider a Khepera robot in a moveable box which on its hand is confined in a

larger area with fixed walls as borders, see Figure 11.

Figure 11: Khepera robot inside a moveable box which is situated in a larger box with fixed walls.

In the experiments two sensors are used, one measuring the velocity of the wheels x1 (t) = v(t) and a

pseudo-infrared sensor. The output x2 (t) = p (t) (writing x (t) for xt and so on for notational reasons) of the

pseudo-infrared sensor is proportional to the target velocity y of the robot so that it can be used immediately

as one of the xi in the parameter rule given above. This is done to retain the simple case of linear dependencies

for easy understanding, while showing the properties of the approach. However the pseudo-sensor is triggered

by the physical infrared sensors with outputs r(t) (the moveable box is large enough to contain both on and

off regions of the pseudo-infrared sensor)

p(t) =

 by(t− 1) : max7
i=0 ri(t) > rmin

0 : max7
i=0 ri(t) ≤ rmin

(30)

so that the sensor p(t) is active as long as there is at least one infrared sensor with an activity larger then the

19



threshold rmin, else the value of this sensor will be zero. Thus we have the case of a switching sensor.

The controller of the robot consists of a single neuron with the update rule for the membrane potential

as given above. Its output y ∈ [−1, 1] is the forward velocity of the robot. We used several tricks in order to

make the learning more effective. On the one hand the learning of H is much faster then that of the other c

since this one realizes the quick reaction of the robot to large model errors and hence the frequency effect. On

the other hand with such large learning rates we must take some precautions against divergencies. Therefore

we push each update through a squashing function, cf.

∆c← η tanh
(

1
η
∆c

)
so that there is no change in the case of small ∆c but there is a maximum step width given by η.

Finally, the model parameters a1 and a2 are learned on-line by gradient descending the model error eq.

4. However in the model the measured speed depends linearly on the controller output, i.e. the model is

appropriate only if the robot moves without problems. When colliding with the wall the model is not valid

any longer and the learning should be switched off. This is achieved in our case by multiplying the learning

rate by a kind of reliance factor which is chosen as

rj = exp
(
−βξ2j

)
for channel j where ξ2j = (xj − ajy)

2 is the error of the model in this channel.

7.1 Long-term memory for the parameters

For many robotic applications the problem of switching sensor activity plays an important role. In particular

our pseudo-infrared sensor p(t) can switch frequently between p (t) = 0 and p (t) = by(t) (see eq. 30) according

to the robots position in the moveable box (Figure 11). So good predictions are obtained only if the model

parameter is switched according to the situation.

The sensor situation depends on the output of the physical infrared sensors ri which can be transformed

in a context m(t) with the values

m(t) =

 1 max7
i=0 ri(t) > rmin

0 max7
i=0 ri(t) ≤ rmin

Our solution to this problem is to train a neural network (with the context m(t) as input) to set the value

of the model parameter a2(t) according to the context. The learning signals are directly given by gradient

descending the model error.

Moreover different model parameters ai produce different synaptic weights, see the discussion above. There-

fore the controller parameters are also represented by a neural network (with the context m(t) as input), except

for the bias H(t) which is changing rapidly all the time (compared with the other parameters) and therefore

does not need to be memorized.

With the incorporation of this long-term memory our controller is able to handle switching sensors.
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7.2 Results

In the experiments the model parameter for the wheel channel a1(t) was conveniently initialized by hand. The

initial value of the model parameter for the pseudo-infrared channel a2(t) was set to zero and the learning

of the model parameter was disabled for the first 1000 steps. As a result the model error is large if the

pseudo-infrared sensor is active which leads to an almost immediate change of the value of the bias H so that

the robot changes its direction of motion. The effect is that the robot avoids collisions with the walls of the

moveable box it is enclosed in.

Figure 12: (a) The path traveled by the robot (with odometry error). For the first 1000 steps model learning

was disabled so that the robot moves only very cautiously not pushing the moveable box. Then model learning

is allowed and with increasing knowledge of the world the robot starts moving the box and explores the full

range of the arena while moving the box around. In the end learning was disabled (with a2 set to 0) again so

that the cautious behavior reappears. (b) Model parameter a1(t) of the wheel channel is already learned

at the beginning of the experiment. (c) Model parameter a2(t) unlearned at the beginning, then learning

to jump between 0 and 1 depending on the activity of the infrared sensors and reset to zero at the end. (d)

ξ(t)−1; The difference between predicted and measured pseudo-infrared sensor values (ξ(t)) gets smaller when

the model learns to predict (middle) and rises with resetting the model parameter a2(t) to zero.

When model learning takes place after step 1000 the model parameter a2(t) becomes more and more

adapted (jumping between a2 = 0 and a2 = b, cf. Figure 12 (c)) which decreases the model error. Hence when

approaching the wall of the moveable box the relearning of H (Fig. 13 (a)) does not take place and the robot

starts moving the box around.

Eventually when the robot reaches the wall of the arena (wheels get blocked) the model error is large so

that the rapid relearning of the bias H and hence the velocity reversal takes place at this collision event. In
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Figure 13: (a) The bias H(t)− 1, (b) the weights for the pseudo-infrared input c2(t) and (c) the wheel input

c1(t) of the homeokinetic neuron used as controller. The input weights converge to different values depending

on the value of the model parameter for the pseudo-infrared channel. The frequency of the changes of the bias

H(t) and therefore the time the robot travels in one direction depends on the model error.

this way the robot now explores the full region of the arena, see Fig.12 (a).

Approx. with step 4000 the learning is disabled from outside and the model parameter a2(t) is set to zero

again. This leads to a large model error and fast relearning of H(t) when the pseudo-infrared sensor is active.

Hence the robot moves only in a short range of his environment like in the beginning of the experiment, so

one can see that if the model for some reason is not able to make good predictions any more the robot returns

to its uncertain behavior.

As to the controller parameters we observe that at the beginning and at the end of the experiment the

pseudo-infrared channel is not included in the sensorimotor loop (c2(t) ≈ 0, Fig. 13(b)) because a2(t) is set

to zero. Hence the sensorimotor loop is closed only over the wheels with c1(t) ≈ 5 (Figure 13 (c)) and with

a1(t) ≈ 0.23 this leads to a feed-back strength R ≈ 1.1 (α ≈ 21.7).

In the middle part the pseudo-infrared sensor is included in the sensorimotor loop, but only when it is

active. Then the model parameter a2(t) ≈ 1 leads to the increase of the appropriate weight until c2(t) ≈ 1.

The readjusted factor α ≈ 1 can also be seen in the wheel channel (c1(t) ≈ 0.2, a1(t) ≈ 0.23) so that R is

around 1.1 again. When the pseudo-infrared sensor is not active the parameters should be a2(t) ≈ c2(t) ≈ 0

and c1(t) ≈ 5. This is not the case (c2(t) ≈ 1, c1(t) ≈ 3.3) so the feed-back strength is smaller then 1 for a

short time. The cause is seen in the very fast switching of the pseudo sensor together with the timescale of

z which is comparable to the activity time of the sensor. Hence z can not reach the fixed point value, so the

theoretically derived values can not exactly be realized.
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In a few words this experiment shows the uncertain, tentative behavior (changing direction of motion very

often) of the robot in areas the model can not predict properly, the ”brave” behavior (covering large areas,

which are predictable for the model) and the change between these two behaviors through learning of the

model parameters. In doing so the robot stays sensitive to the reactions of the environment. This could be

realized through the derived learning rules. Additionally the switching sensor is integrated in the sensorimotor

loop, as long as it is active.

8 Outlook and Conclusions

We have demonstrated in the present paper that the very simple learning rules, cf. eq. 23 derived from the

general principle realize a self-learning robotic system which can survive in a sufficiently simple world without

any further external help. In particular we have seen that sensors are automatically integrated according to

their response strength as soon as they deliver a signal to the controller. Moreover the system also can deal

with the problem of a rapid change in the properties of the sensors. The basic effect observed is that the

learning rule drives the robot into an explorative mode of behavior which however is sensitive to the reactions

of the environment by way of the model error. From a dynamic systems point of view we have a closed loop

control system with a pitchfork or a Hopf bifurcation (if the learning of the threshold is included) and the

effect of the learning is to drive the system to a regime slightly above the bifurcation point where such systems

are known to be particularly sensitive.

The findings of the present paper reveal also a general property of our approach which is related to the

dilemma between exploration and the exploitation of knowledge gathered in the model. Typically this difficulty

arises in the following way. Assume we have an agent which is to explore the world and while exploring to

construct a model of its behavior which on its hand is used for the guidance of control. Then one can either

choose to stay with the behaviors which are well modeled and be safe or to further explore the space with the

chance of getting lost. This needs a careful tuning of the exploration rate in practical realizations.

In our approach this dilemma is solved by the fact that the robot reacts with a change in behavior if

the model error is increasing suddenly. This may happen if the robot gets into a situation which is not yet

”understood” by its model. This restricts the robot to the behavior which is well modeled by the current model.

However with each of such situations the model also gets some new information which can be integrated into

the model making the error smaller and hence the reaction slower when the robot reencounters the situation. In

this way the robot will conquer increasingly larger regions of the behavior space. In other words our controller

automatically adapts the exploration rate to the needs of (model) knowledge acquisition.

Another aspect is in the relation between the short term memory of the original setting where the param-

eters of the neuron are changed on the behavioral time scale and the long-term memory introduced in the

present paper. We have demonstrated that the rapid parameter learning can well be used as a learning signal

for a long-term memory which stores the parameter values of the neuron in a context dependent fashion so that

a parameter and hence behavior recall guided by context information is realized. In future work this technique

will be used for a weighted feed-in of the learning signal into the parameter network the weights being given

by a kind of reinforcement signal obtained either from outside or in terms of the future model errors. In the
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latter case one might use the wheel error so that behaviors which lead to collisions with obstacles would be

avoided as a result of the learning. Hence we may expect that the agent acquires more foresight in the course

of the time.
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