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Abstract

Starting from the homeokinetic principle introduced earlier the present paper presents
simple learning rules for the neurons of a closed loop robot controller. These learning
rules are shown in a simple application case to realize a self-learning autonomous robot
which can survive in a sufficiently simple world without any further external help. In
particular we demonstrate that sensors are automatically integrated according to their
response strength as soon as they deliver a signal to the controller. Moreover the system
also can deal with the problem of a rapid change in the properties of the sensors. The
basic effect observed is that the learning rule drives the robot in the sensorimotor loop
into an explorative mode of behavior which however is sensitive to the reactions of the
environment by way of the model error. From a dynamic systems point of view we have
a closed loop control system with a pitchfork or a Hopf bifurcation (if the learning of
the threshold is included) and the effect of the learning is to drive the system to a regime
slightly above the bifurcation point where such systems are known to be particularly sen-
sitive.

1 Introduction

The central interest of our work is the self-organized acquisition of behaviors for autonomous robots.
Our work is based on the belief that true autonomy must involve the phenomenon of emergence.
Before giving some ideas how this could be realized in the robotic domain let us first illustrate the
goal in a realistic case. Consider a robot with a neural network controller with synaptic weights
initially in the tabula rasacondition. So there is no reaction of the robot to its sensor values and
activities, if present at all, are only stochastic ones. The robot is to be in an environment with static
and possibly also dynamic objects. The task now is to find an objective function for the adaptation
of the controller which is entirely internal to the robot driving the parameters so that the robot will
start acting and while acting to explore and develop its perception of the world and of object related
behavior.

Our work aims at finding general principles for the realization of this program. One of our ap-
proaches is given the name of homeokinesis [4], [5], [2] which is the dynamical pendant of home-
ostasis as introduced by Cannon [1] and later Ashby [7] and in the embodied intelligence approach



Figure 1. Dynamic harmony is reached if the agent manages to balance the information streams
forward and backward in time. The time loop error is given by the difference between the true
sensor valuesxold and the reconstructedxrecon = Model−1 (xnew) ones.

[6] as discussed in [2]. We may call this principle also the principle of dynamic harmony between
internal and external world. This principle can be given a constructive formulation in the following
way. We consider the case of an autonomous agent and provide the agent with an adaptive model of
its behavior. A learning signal for both the model and the controller is derived from the misfit between
the real behavior of the agent in the world and that predicted by the model. As we could show with
several examples this misfit is minimized if the agent exhibits a smooth, controlled behavior.

In this way, a learning signal for the adaptation of the behavior is derived from a purely internal
perspective. However using a predictive model will lead to active behavior modes only if the agent
is given a drive for activity (or curiosity or the like) from outside. We therefore use a retrospective
model where the modeling step is backward in time. The succession of steps forward through the
world and backward through the model can be considered as running through a time loop. The aim
of adaptation now is the minimization of the time loop error. We can also say that the dynamical
harmony is reached if the information streams forward and backward in time are balanced, see Figure
1.

The basic effect of this paradigm is understood in the following way. The model error is propagated
backward through time to the input of the controller. Decreasing the time loop error means that when
looking backward in time the behavior is to damp the influence of noise (model error). However in the
physical (forward) direction of the time arrow this means that the behavior is to magnify the noise. As
a consequence the overall feed-back strength of the sensorimotor (SM) loop and hence the response
of the robot to the sensors is increasing until the dynamics starts exploding. Then the nonlinearities of
the world and the controller will confine the further increase of the activity. As a result the system is
driven towards a bistable regime (or a limit cycle behavior, see below) with smooth switching between
behaviors (directions of motor velocities) the frequency of which is dominated by the strength of the
model error.

The principle can be translated into concrete learning rules for the synapses of the controller neu-
rons. In the present paper we want to investigate these learning rules in a simple case and show that it
generates on the one hand an explorative behavior of the robot which is sensitive to the environment
(the frequency effect) and on the other hand we demonstrate that sensors are automatically integrated.

2 Essentials of the approach

Essential features of our self-learning approach to behavior control can already be seen by considering
a very simple system consisting of a neuron controlling the velocity of a robot.



2.1 The sensorimotor loop

Let us consider a closed loop velocity control of a robot corresponding to a sensorimotor (SM) loop
which is closed via the wheels only. Our controller consists of a single leaky-integrator neuron with
membrane potentialz updated in the time step as

τ−1∆zt = −zt + cxt+1 + H (1)

where the input is the true wheel velocityx as measured by the wheel counter andH being a bias
(threshold). The update is carried out when the new sensor valuext+1 arrives. The output of the
neuron

yt = tanh (zt) (2)

is the target wheel velocity of the robot. We make a simple model assumption relating the expected
true velocityx̂t+1 to the target velocityyt as

x̂t+1 = ayt (3)

where the constanta (the response strength of the channel) can be learned by minimizing the error

E = (xt+1 − ayt)
2 (4)

for samples(xt+1, yt) obtained on-line in each time stept = 0, 1, . . ..
Our SM loop is described by the system

xt+1 = ayt + ξt (5)

whereξt accounts for the differences between the true wheel velocity and the one predicted by the
deterministic model.

The behavior of the robot essentially depends on the values ofc and H. This is seen best by
observing that by means of eq. 3 we get the closed dynamics for the membrane potential as

τ−1∆zt = −zt + ca tanh (zt) + H + cξt (6)

The essential point of this dynamics is already seen from a linear stability analysis obtained by re-
placingtanh z with z (for smallz) so that withK = ca

τ−1∆zt = − (1−K) zt + cξt (7)

(caseH = 0 for simplicity). The deterministic system is seen to have a stable fixed point (FP)z∗ = 0
as long as0 < K < 1. This means thatzt is fluctuating around zero (zt is the time-discrete version
of the Ornstein-Uhlenbeck process) and the robot essentially executes a random walk. AtK = 1 we
have a pitchfork bifurcation so that forK > 1 the FPz∗ = 0 is destabilized and there are two new
FPs atz = ±z∗ (c). With the noise included we get a stochastic bifurcation at some valueKc > 1
which depends on the strength of the noise. IfK > Kc the robot moves either forward or backward
with constant velocity (apart from fluctuations) and withK slightly aboveKc the noise can switch
the system between these two alternatives.

One of the benefits of this closed loop control system consists in the following. When colliding
with an obstacle the wheels are blocked, so thatx = 0 andz decays. If there is some (small) additional
noise in the dynamics of the membrane potentialz it will fluctuate around zero. These fluctuations are
amplified if they are of the right sign, i.e. if the robot is moving away form the obstacle. Hence after
a short time the robot is found to move away from the obstacle. We may say that in this elementary
sense the robot is able to survive.



In the case of finiteH the FPs and hence the velocity of the robot are obtained from

z = K tanh (z) + H

so that they are a function of bothH andc and we may use these parameters in order to define the
behavior of the robot. Our ambition now is to find adaptation rules for these parameters so that the
robot determines its behavior independently.

2.2 The parameter dynamics

The homeokinetic principle (gradient descending the time loop error) in some approximation pro-
duces the following dynamics for the synaptic strengthc and the biasH

∆c = µa− 2µzx

∆H = −2µz (8)

where
µ = εξ2g′ (z)

is a modified update (learning) rate, andg′ = tanh′ (z) = 1 − tanh2 (z). The parameter dynamics
is to be used concomitantly with thez dynamics so that the parametersc andH in eqs. 1 or 6 are
now time dependent. As we will see below the time scale for the change of in particularH is on the
level of the behavior so that in other words the behavior is essentially controlled by the dynamics of
H. This is different from the usual paradigm of learning where we have a learning and a performance
phase or where there is a separation of time scales for learning and behaving.

For a discussion we consider the caseH = 0 first. The dynamics forc, eq. 8, consists of the
driving termµa and an anti-Hebbian term given by the product of the input into the synapse times
the membrane potential of the neuron both quantities being felt directly at the synapse. In order to
discuss the effects of the two terms we assume that we start the system withK < 1 (in the tabula
rasa condition, i.e.c = K = 0, e.g.) so thatz fluctuates around zero. Hence the anti-Hebbian term is
negligible and the driving term is seen to increase the value ofK since∆K = ∆ (ca) = µa2. Once
K > 1 is reached the velocity increases exponentially so that the robot starts moving. Withy2 > 0 the
anti-Hebbian term comes into play and the increase ofc is stopped ifa = 2zx hence1 = 2z tanh z
or 1 = 2Ky2 which happens atK ≈ 1.2 wherey ≈ ±0.65. The direction of the robot (sign of the
velocity) is arising from a spontaneous breaking of thex → −x symmetry inherent in the complete
(i.e. parameter and state) dynamics. Note thatK is the feed-back strength in the SM loop so that we
observe a self-regulation of the system to a feed-back strength which is slightly supercritical.

With H 6= 0 the FP of course depends also on the value ofH and there is a hysteresis effect w.r.t
the change ofH which is the larger the largerK. Under the parameter dynamics the value ofH
changes and it is easily seen that a limit cycle behavior is obtained. The value ofc is seen to slightly
oscillate with twice theH frequency, but in the average the strength ofK is self-regulating again to
the slightly supercritical value ofK ≈ 1.2. We may consider the transition to the limit cycle as a
self-induced Hopf bifurcation where the value ofc is self-regulating to the regime slightly above the
bifurcation point.

The frequency of the limit cycle oscillation is modulated by the strength of the noiseξ2. With
varying noise strength the robot will execute an irregular searching behavior, i.e. the robot will move
forward for some time then reverse velocity and move backwards and so on. The most interesting
property however is observed when the robot collides with some obstacle so that the wheels get
blocked. Thenξ2 in eq. 8 is very large so that the rate of change ofH largely increases and the robot
nearly immediately will reverse its velocity. In this way the parameter dynamics may be said to create
an explorative behavior which stays sensitive to (perturbations by) the environment.



In the applications with both wheels driven by homeokinetic neurons the robot is found to explore
the world without getting stuck in corners or at other obstacles, see the videos [3]. Please note that
these properties are not the performance of the trained neuron but instead result from the interplay of
state and parameter dynamics, i.e. the concomitant effects of eqs. 1 and 8.

3 Several channels

Let us now consider the case of one controller neuron with the SM loop closed via several channels.
The sensor valuesxi may now depend in a more general form on the value ofy. As the most basic
model assumption we again use a simple proportionality so that we write the SM loop as

xi,t+1 = aiyt + ξi

where the deterministic part may be considered as the model and the ”noise”ξ is the model error, the
constantsai being learned online. The update rule for the membrane potential is

τ−1∆z = −z +
∑

i

cixi + H (9)

the FP of eq. 9 is atz = Ky + H (we assumeξi = 0 for all channels) whereK

K =
∑

i

ciai

is the feed-back strength in the SM loop. The corresponding neuron output is at

y = tanh (Ky + H) (10)

The homeokinetic principle yields the following rules for the dynamics of the parameters

∆ci = µai − 2µzxi − γci (11)

∆H = −2µz

whereµ was introduced above,ξ2 is the strength of the noise averaged over the channels, andγ
(which is small) produces a (weak) decay of the weights. We again find that the change ofci is given
by a driving together with an anti-Hebbian term.

The parameter dynamics is analyzed in the following way. When starting withci = 0 for all i
the feed-back strengthK is zero so that in the beginningy = 0 and the driving term in the learning
dynamics produces∆ci = µai hence∆ (ciai) = µa2

i so that the feed-back strength in each of the
channels increases with channels of higher response strength|ai| being favored. Once the overall feed-
back strength exceeds the critical value, the anti-Hebbian term comes into play and withH = const
(no update) convergence is reached if ever1 = 2Ky2 under the constraint that the FP condition eq.
10 is satisfied. The stationary solution is reached if

γci =
(
1− 2Ky2

)
ai

or

K =
1

γ/a2 + 2y2
(12)

so thatci = αai with

α =
1

γ + 2a2y2



K and henceα being obtained from the solution of the FP eq. 10 using eq. 12, i.e. from the solution
of (H = 0 at present)

y = tanh

(
y

γ/a2 + 2y2
+ H

)
The position of the FP now depends on the value ofγ/a2. For instance the FP is aty = 0.58 and
K = 1.15 if γ/a2 = 0.2 which is only slightly lower as compared toy = 0.65 andK = 1.21 for
γ = 0. Obviously each sensori is integrated into the SM loop according to its response factorai. The
inclusion of theH dynamics will again produce the limit cycle behavior but the result will stay valid
in the average over (at least) one period. Note that the value ofα > 0 sinceK > 0.

Both this simple analysis and computer simulations readily show that the system is self-regulating
again into the limit cycle oscillations independently on the number of channels and the values ofai,
since the feed-back strength is determined again byK alone. Hence we may say that the irregular,
environment sensitive explorative behavior is reproduced also in the case of many channels where
each channel is related to a single sensor. Moreover theci are found to reach values so that all sensors
are integrated into the SM loop.

4 Switching sensors

One point of interest in the present paper is with the switching of sensors. In the above considerations
we have assumed that the sensor response is essentially proportional to the velocity of the robot.
This is not the case for a proximity sensor. However we could use a preprocessing and consider the
change of the sensor value in the time step as one of ourxi. However the problem is that this sensor
characteristics is valid only if the sensor is ”on”, i.e. the obstacle is in the reach of the sensor. Another
point of interest of the present approach is the case that new sensors are installed for some time or
that sensors temporarily break down. In any case our learning is to include the temporary switching
on and off of sensors.

In principle the parameter dynamics of eq. 11 may well cope with the situation. Assume we switch
on a new sensork and assume the value of the couplingck = 0. Then in the beginning we have
∆ (ckak) = εξ2a2

k (1− 2Ky2) > 0 since the damping term−γεξ2ckak in this channel is negligible
as compared to the other channels, because of the small value ofck. Obviously the value ofckak is
rising and this procedure will stop only ifck = αak is reached. Concomitantly the couplings of the
other sensors and hence the value ofα is readjusted so that the global balance is reestablished. Hence
a newly switched on sensor is automatically integrated into the SM loop. We may also see that the
switching off is dealt with in the same automatic fashion.

The problem however is that the processes of readjusting the coupling vectorc takes some time.
In practical applications (see below) the switching on and off of sensors may take place in very short
time intervals. It is therefore of interest not to relearn the couplings but instead to have a kind of
long-term memory where the couplings are stored and are read out appropriately. This is possible
either on the basis of direct information on the state of the sensors or on context information which is
able of qualifying the sensor situation. We will study this case in the following.

5 Experiments with a physical Khepera robot

Our experiments have been chosen so that we can demonstrate both the effects described above, i.e.
on the one hand we want to show that the robot adapts its exploration according to its knowledge of
the world. This means that it will move more or less tentatively as long as the knowledge is small,
i.e. the modeling error is large and with increasing knowledge a more and more explorative behavior



will originate. On the other hand we want to study the situation of switching sensors. We therefore
consider a Khepera robot in a moveable box which on its hand is confined in a larger area with fixed
walls as borders, see Figure 2.

Figure 2. Khepera robot inside moveable box which again is in a larger box with fixed walls.

Two sensors are used, one measuring the velocity of the wheelsx1 (t) = v(t) and a pseudo-infrared
(pseudo-IR) sensor. The outputx2 (t) = p (t) of the pseudo-IR sensor is proportional to the target
velocity y of the robot so that it can be used immediately as one of thexi in the parameter rule given
above. However the pseudo sensor is triggered by the physical IR sensors with outputsr(t) (the
moveable box is large enough to contain bothonandoff regions of the pseudo IR)

p(t) =

{
by(t− 1) : max7

i=0 ri(t) > rmin

0 : max7
i=0 ri(t) ≤ rmin

(13)

so that the sensorp(t) is active as long as there is at least one IR sensor with an activity larger then
the thresholdrmin, else the value of this sensor will be zero. Thus we have the case of a switching
sensor.

The controller of the robot consists of a single homeokinetic neuron with the update rule for the
membrane potential as given above. Its outputy ∈ [−1, 1] is the forward velocity of the robot,
steering is disabled. We introduce an auxiliary inputx0 = 1 so that the synapsec0 corresponds to the
threshold valueH. So our vector of sensor values isx = (1, v, p)T , the vector of response strengths
is a = (1, a1, a2)

T and the above formula runs overi = 1, 2 (including i = 0 in the case of the
membrane potential).

We used several tricks in order to make the learning more effective. On the one hand the learning
of c0 is much faster then that of the otherc since this one realizes the quick reaction of the robot to
large model errors and hence the frequency effect. On the other hand with such large learning rates we
must take some precautions against divergencies. Therefore we push each update through a squashing
function, cf.

∆c← η tanh

(
1

η
∆c

)
so that there is no change in the case of small∆c but there is a maximum step width given byη.
Moreover we use the derivative of thetanh function astanh′ () = 1.1− tanh2 () in order to have still
non-vanishing updates even in the region of the saturation of the neuron.

Finally, the model parametersa1 anda2 are learned on-line by gradient descending the model error
eq. 4. However in the model the measured speed depends linearly on the controller output, i.e. the
model is appropriate only if the robot moves without problems. When colliding with the wall the
model is not valid any longer and the learning should be switched off. This is achieved in our case by



multiplying the learning rate by a kind of reliance factor which is chosen as

rj = exp
(
−βξ2

j

)
for channelj whereξ2

j = (xj − ajy)2 is the error of the model in this channel.

5.1 Long-term memory for the parameters

A central point of the present work is that of switching sensors. In particular our pseudo-IR sensor
p(t) can switch frequently betweenp (t) = 0 andp (t) = by(t) (see eq. 13) according to the robots
position in the moveable box (Figure 2). So good predictions are obtained only if the model parameter
is switched according to the situation.

The sensor situation depends on the output of the physical IR sensorsri which can be transformed
in a contextm(t) with the values

m(t) =

{
1 max7

i=0 ri(t) > rmin

0 max7
i=0 ri(t) ≤ rmin

Our solution to this problem is to train a neural network (with the contextm(t) as input) to set the
value of the model parametera2(t) according to the context. The learning signals are directly given
by gradient descending the model error.

Moreover different model parametersai produce different synaptic weights, see the discussion
above. Therefore the controller weights are also represented by a neural network (with the context
m(t) as input), except for the bias weightc0(t) which is changing rapidly (compared with the other
weights) all the time and therefore does not need to be memorized.

With the incorporation of this long-term memory the homeokinetic controller is able to handle
switching sensors.

5.2 Results

In the experiments the model parameter for the wheel channel was set by hand so that only the model
for the pseudo-IR channel had to be learned. The initial value ofa2(t) was set to zero and the learning
of the model parameter was disabled for the first 1000 steps. As a result the model error is large if
the pseudo IR is active which leads to an almost immediate change of the value ofc0 so that the robot
changes its direction of motion. The effect is that the robot avoids collisions with the walls of the
moveable box it is enclosed in.

When model learning takes place after step1000 the model parametera2(t) becomes more and
more adapted (jumping betweena2 = 0 anda2 = b, cf. Figure 3 (c)) which decreases the model
error. Hence when approaching the wall of the moveable box the relearning ofc0 (Fig. 4 (a)) does not
take place and the robot starts moving the box around.

Eventually when the robot reaches the wall of the arena the wheel error is large so that the rapid
relearning ofc0 and hence the velocity reversal takes place at this collision event. In this way the
robot now explores the full region of the arena, see Fig.3 (a).

Approx. with step 4000 the learning is disabled and the model parametera2(t) is set to zero
again. This leads to a large model error and fast relearning ofc0(t) when the pseudo-IR sensor is
active. Hence the robot moves only in a short range of his environment like in the beginning of the
experiment.

At the beginning and at the end of the experiment the pseudo-IR channel is not included in the SM
loop (c2(t) ≈ 0, Fig. 4(b)) becausea2(t) is set to zero. Hence the SM loop is closed only over the



Figure 3. (a) The path traveled by the robot (with odometry error). For the first1000 steps model
learning was disabled so that the robot moves only very cautiously not pushing the moveable
box. Then model learning is allowed and with increasing knowledge of the world the robot starts
moving the box and explores the full range of the arena while moving the box around. In the end
learning was disabled (witha2 = 0) again so that the cautious behavior reappears. (b) Model
parametera1(t) of the wheel channel is already learned at the beginning of the experiment.
(c) Model parametera2(t) unlearned at the beginning, then learning to jump between0 and
1 depending on the activity of the IR sensors and reset to zero at the end. (d)ξ(t) − 1; The
difference between predicted and measured pseudo-IR-sensor values (ξ(t)) gets smaller when
the model learns to predict (middle) and rises with resetting the model parametera2(t) to zero.

wheels withc1(t) ≈ 5 (Figure 4 (c)) and witha1(t) ≈ 0.23 this leads to a feed-back strengthK ≈ 1.1
(α ≈ 21.7).

In the middle part the pseudo-IR sensor is included in the SM loop, but only when it is active. Then
the model parametera2(t) ≈ 1 leads to the increase of the appropriate weight untilc2(t) ≈ 1. The
readjusted factorα ≈ 1 can also be seen in the wheel channel (c1(t) ≈ 0.2, a1(t) ≈ 0.23) so thatK is
around1.1 again. When the pseudo-IR sensor is not active the parameters should bea2(t) ≈ c2(t) ≈ 0
andc1(t) ≈ 5. This is not the case (c2(t) ≈ 1, c1(t) ≈ 3.3) so the feed-back strength is smaller then
1 for a short time. The cause is seen in the very fast switching of the pseudo sensor. The membrane
potentialz is large when entering the region with pseudo IR off, because the robot is moving across
the moveable box. With the slow changing ofz (cf. eq. 9) the neuron outputy remains large. Hence
the anti-Hebbian term2Kxiy = 2Kaiy

2 in eq. 11 stays more dominant for the short time the pseudo
sensor is off leading to a smaller value ofc1 then expected.

In a few words this experiment shows the uncertain, tentative behavior (changing direction of mo-
tion very often) of the robot in areas the model can not predict properly, the ”brave” behavior (covering
large areas, which are predictable for the model) and the change between these two behaviors through
learning of the model parameters. And by the way the switching sensor is integrated in the SM loop,
as long as it is active.



Figure 4. (a) The bias weightc0(t)− 1, (b)the weights for the pseudo-IR inputc2(t) and (c) the
wheel inputc1(t) of the homeokinetic neuron used as controller. The input weights converge
to different values depending on the value of the model parameter for the pseudo-IR channel.
The frequency of the changes ofc0(t) and therefore the time the robot travels in one direction
depends on the model error.

6 Outlook and Conclusions

We have demonstrated in the present paper that the very simple learning rules, cf. eq. 8 derived
from the homeokinetic principle realize a self-learning robotic system which can survive in a suffi-
ciently simple world without any further external help. In particular we have seen that sensors are
automatically integrated according to their response strength as soon as they deliver a signal to the
controller. Moreover the system also can deal with the problem of a rapid change in the properties
of the sensors. The basic effect observed is that the learning rule drives the robot into an explorative
mode of behavior which however is sensitive to the reactions of the environment by way of the model
error. From a dynamic systems point of view we have a closed loop control system with a pitchfork
or a Hopf bifurcation (if the learning of the threshold is included) and the effect of the learning is to
drive the system to a regime slightly above the bifurcation point where such systems are known to be
particularly sensitive.

The findings of the present paper reveal also a general property of our approach which is related to
the dilemma between exploration and the exploitation of knowledge gathered in the model. Typically
this difficulty arises in the following way. Assume we have an agent which is to explore the world
and while exploring to construct a model of its behavior which on its hand is used for the guidance
of control. Then one can either choose to stay with the behaviors which are well modelled and be
safe or to further explore the space with the chance of getting lost. This needs a careful tuning of the
exploration rate in practical realizations.

In our approach this dilemma is solved by the fact that the robot reacts with a change in behavior
if the model error is increasing suddenly. This may happen if the robot gets into a situation which is



not yet ”understood” by its model. This restricts the robot to the behavior which is well modelled by
the current model. However with each of such situations the model also gets some new information
which can be integrated into the model making the error smaller and hence the reaction slower when
the robot reencounters the situation. In this way the robot will conquer increasingly larger regions of
the behavior space. In other words the homeokinetic controller automatically adapts the exploration
rate to the needs of (model) knowledge acquisition.

Another aspect is in the relation between the short term memory of the original setting where the
parameters of the neuron are changed on the behavioral time scale and the long-term memory intro-
duced in the present paper. We have demonstrated that the rapid parameter learning can well be used
as a learning signal for a long-term memory which stores the parameter values of the neuron in a con-
text dependent fashion so that a parameter and hence behavior recall guided by context information is
realized. In future work this technique will be used for a weighted feed-in of the learning signal into
the parameter network the weights being given by a kind of reinforcement signal obtained either from
outside or in terms of the future model errors. In the latter case on might use the wheel error so that
behaviors which lead to collisions with obstacles would be avoided as a result of the learning. Hence
we may expect that the agent acquires more foresight in the course of the time.
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