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Abstract

In recent years, information theory has come into the focus of re-
searchers interested in the sensorimotor dynamics of both robots and liv-
ing beings. One root for these approaches is the idea that living beings
are information processing systems and that the optimization of these
processes should be an evolutionary advantage. Apart from these more
principal questions, there is much interest recently in the question how a
robot can be equipped with an internal drive for innovation or curiosity
that may serve as a drive for an open ended, self-determined development
of the robot. The success of these approaches depends essentially on the
choice of a convenient measure for the information. This paper studies
in some detail the use of the predictive information (PI), also called ex-
cess entropy or effective measure complexity, of the sensorimotor process.
The PI of a process quantifies the total information of past experience
that can be used for predicting future events. However, the application
of information theoretic measures in robotics mostly is restricted to the
case of a finite, discrete state-action space. This paper aims at applying
the PI in the dynamical systems approach to robot control. We study
linear systems as a first step and derive exact results for the PI together
with explicit learning rules for the parameters of the controller. Interest-
ingly, these learning rules are of Hebbian nature and local in the sense
that the synaptic update is given by the product of activities available
directly at the pertinent synaptic ports. The general findings are exem-
plified by a number of case studies. In particular, in a two-dimensional
system, designed at mimicking embodied systems with latent oscillatory
locomotion patterns, it is shown that maximizing the PI means to recog-
nize and amplify the latent modes of the robotic system. This and many
other examples show that the learning rules derived from the maximum
PI principle are a versatile tool for the self-organization of behavior in
complex robotic systems.
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1 Introduction

In recent years, information theory has come into the focus of researchers inter-
ested in the self-organization of robot behavior. One root for these approaches
is the idea that living beings are information processing systems and that the
optimization of these processes might be an evolutionary advantage. Apart
from these more speculative ideas there is much interest recently in the ques-
tion how a general principle can be found for equipping a robot with an internal
drive for innovation or curiosity. This leads away from the pure task dependent
paradigms of robotics towards a robot that is driven solely by the desire to
get more and more information about itself and the environment. Eventually,
a strategy for an open ended, self-determined development of the robot might
emerge.

The development of these ideas has soon made clear that one has to use a
convenient measure for the information. Maximizing Shannon’s information is
not directly feasible since it favors processes, like noise, of maximum complex-
ity. Optimal in that sense would be a robot that behaves as random as possible.
Alternatively, in [19] a set of univariate and multivariate statistical measures are
introduced in order to quantify the information structure in sensory and motor
channels. Generic information theoretic criteria may vary in their emphasis:
for example, one may focus on maximization of empowerment (the perceived
amount of influence or control that the agent has over the world) [18] and [17];
minimization of heterogeneity across states of multiple agents, measured with
either the variance of Shannon entropy of rule-space [27], or Boltzmann entropy
of swarm-bots’ states [2]; maximization of spatiotemporal coordination within a
modular robot, measured via the excess entropy computed over a multivariate
time series of modules’ states [26], etc. What is common to these examples
of information-driven self-organization is the characterization of sensorimotor
(or perception-action) loop in information theoretic terms. For instance, the
empowerment measures the amount of Shannon information that the agent can
“inject into” its sensor (i.e., received signal) through the environment, affecting
future actions and future perceptions. Technically, for a pre-defined agent’s be-
havior, empowerment is defined as the capacity of the agent’s actuation channel:
the maximum mutual information for the channel over all possible distributions
of the transmitted signal (i.e., actions) [18] and [17]. On the other hand, the
maximization of excess entropy during a time interval, used in [26], allows to
change the controllers’ logic (that is, change the agent’s behavior) within a mod-
ular robot in such a way that its actuators become coordinated. In this example,
the adaptation of controllers occurs evolutionarily with the fitness function re-
warding the regularity and richness of the actuators’ multivariate series. The
same adaptation can also be achieved during the agent’s lifetime — in other
words, the time interval over which the excess entropy is computed may be in-
terpreted either as the full lifetime of the individual (leading to an evolutionary
representation), or as a finite period within such lifetime (leading to an online
learning representation).

This paper studies in some detail the use of the predictive information of
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the sensorimotor process. It differs from the above mentioned studies in the
following way: on the one hand, the approach does not aim at maximizing
the sensorimotor channel capacity for a fixed pre-defined behavior (that was
the case with empowerment), but rather attempts to produce learning rules for
the agent optimizing its behavior; on the other hand, the approach aims to
produce such learning rules explicitly, rather than leaving the optimization of
the behavior to evolutionary or other implicit operators (that was the case with
excess entropy in [26]). Moreover, an essential objective is to make the approach
independent of any discretization of the state and/or the action space so that
it can be immediately useful in the dynamical systems approach to robotics.

The predictive information of a process quantifies the total information of
past experience that can be used for predicting future events. Technically, it is
defined as the mutual information between the future and the past, see [4]. It
has been argued that predictive information, also termed excess entropy [6] and
effective measure complexity [15], is the most natural complexity measure for
time series.

The behaviors emerging from maximizing the PI are qualified by the fact
that predictive information is high if – by its behavior – the robot manages to
produce a stream of sensor values with high information content (in the Shannon
sense) under the constraint, however, that the consequences of the actions of
the robot remain still predictable. A robot maximizing PI therefore is expected
to show a high variety of behavior without becoming chaotic or purely random.
In this working regime, somewhere between order and chaos, the robot may be
expected to explore its possibilities of actions in a most effective way.

This is why the PI may serve as a drive for a self-determined development of a
robot. This complements approaches that equip the robot with a motivation sys-
tem producing internal reward signal for reinforcement learning a pre-specified
task. Pioneering work has been done by Schmidhuber using the prediction er-
ror as a reward signal in order to make the robot curious for new experiences,
[28]. The approach has been further developed in a number of papers, see e.g.
[31], [29]. Related ideas have been put forward in the so called play ground
experiment by Kaplan and Oudeyer [16], [22] by using the learning progress as
a reward signal. Steels[30] proposes the Autotelic Principle, i.e. the balance of
skill and challenge of behavioral components as the motivation for open ended
development whereas Barto [3] uses the prediction error of skill models to build
hierarchical skill collections. Predictive information could be used alternatively
as a reward signal in reinforcement learning. This would be of special interest
also in connection with recent developments in reinforcement learning in con-
tinuous state action spaces, cf. [32], because the PI is not restricted to discrete
spaces at all. However in the present paper we will not follow this line but
instead derive task-free learning rules directly from the gradient ascent on the
PI.

The application of information theoretic measures in robotics mostly is re-
stricted to the case of a finite state-action space with discrete actions and sensor
values. The past two decades in robotics have seen the emergence of a new trend
of control in robotics which is rooted more deeply in the dynamical systems ap-
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proach to robotics using continuous sensor and action variables. This approach
is very appealing since it yields more natural movements of the robots and al-
lows to exploit embodiment effects in a most effective way. For instance many
successful realizations of the so called morphological computation are realized
by using recurrent neural networks as controller of the dynamical system body,
brain, and environment, see [24] and [25] for an excellent survey.

The information theoretic approach in the dynamical systems representation
has still to be worked out in detail and it is the main motivation of this paper to
present some first results in this direction. We start by answering the following
question: Given a robot in its environment, how can we find the dynamical
system describing its dynamics together with an explicit learning rule optimizing
behavior so that the predictive information of the sensor process is maximized.
This approach has to work from scratch, i.e. without any knowledge about the
robot, so that everything has to be inferred from the sensor values alone. The
question can not be answered in full generality so that we restrict ourselves in
this paper to the case of linear systems. This is a restriction of generality but
has the advantage that we get analytical results, general statements, and last
but not least explicit learning rules. However, the results are useful also in the
nonlinear case as will be demonstrated in a later paper.

In a recent paper a general learning rule [33] has been derived from the
predictive information by using the natural gradient technique in a finite state-
action space. This paper complements that approach for the case of continuous
spaces and controllers realized by parameterized functions like neural networks.
The information theoretical approach can also be considered as an alterna-
tive to the principle of homeokinesis [12],[8], a systematic approach to the self-
organization of behavior that has been applied successfully to a large number
of complex robotic systems, cf. [11], [10], [14], [13]. Moreover, this principle has
also been extended to form a basis for a guided self-organization of behavior
[21], [20]. We hope to benefit substantially from this parallel in future work.

The paper is organized as follows: Section 2.2 is devoted to a rather gen-
eral sensorimotor dynamics. We start in Section 2 by formulating the general
dynamic system, and give in 2.1 the corresponding translation into the proba-
bilistic picture. This representation is necessary for the evaluation of the pre-
dictive information introduced and studied in some detail in Section 3. Section
4 exemplifies these general results for the case of a stochastic oscillator system,
mimicking in particular embodied systems with latent oscillatory locomotion
patterns. Considering the special case of linear systems, general learning rules
are derived in Sec. 6. Although restricted to linear systems, these results are
useful since they show a way how the sampling problem can be overcome in
practical applications. The extension to the nonlinear case will be given in a
later paper.
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Figure 1: Schematic representation of the sensorimotor loop. The state of the
world at time t is wt. The world is observed by the sensor values st which are
then memorized by the internal state mt. Actions are functions of the internal
state m.

2 The sensorimotor loop

The sensorimotor loop introduced by the Figure 1 can be formalized either in
terms of the kernels which define the processes or by specifying the correspond-
ing time discrete stochastic dynamical system.

2.1 Probabilistic formulation

We are now going to give a brief sketch of the representation of the sensorimotor
loop, cf. Fig. 1 by formulating the relevant transition kernels. We do not claim
that the diagram represents any situation but, to our experience, most of the
situations encountered in robotics or biology are being covered. Quite generally,
a kernel p (y|x), where x ∈ Rn and y ∈ Rm, is a function f : Rn × Rm → R1

assigning each combination of vectors x, y a probability, so that 0 ≤ f ≤ 1 and∫
f (s, w) ds = 1. The pertinent kernels specifying the sensorimotor loop are

given as

• The dynamics of the world (which is usually not known explicitly) is as-
sumed to be described by the kernel p (wt+1|wt) defining the probability
that the world state in the next time step is wt+1 given the world is now
in state wt. If the process is non-stationary, the kernel will carry an extra
time index t so that the kernel is written as p (wt+1|wt; t). In the case
of non-stationary states, all kernels introduced here and in the following
are explicitly time dependent but we will omit this in the notation in the
following.

• The world state wt ∈ RnW observed at time t is mapped by the kernel
p (st|wt) to the sensor state st ∈ RnS .
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• However the information in the sensor process S is usually not complete
which is the problem of hidden variables. One way out of this is to intro-
duce the memory mt which includes earlier sensor values so that, hope-
fully, the missing information is reintroduced by the memory. The time
evolution of the latter is given by the kernel p (mt|mt−1, st).

• Actions are given in terms of the history by the kernel p (at|mt) which
defines the policy of the agent.

• Given the action and the history of the sensor process we may define the
kernel p (st+1|mt, at) which determines the sensorimotor dynamics. This
kernel is essentially what we need in order to determine the predictive
information studied in this paper.

One of the aims of this paper is to use the information theoretic measures like
predictive information in the dynamical systems theory of the sensorimotor loop.
We therefore give in the following the relation between these two approaches.

2.2 Dynamical systems formulation

The translation of the sensorimotor dynamics as given by the above kernels
into the dynamical systems language can be done in different ways, we use
the following. Let us consider first a generic kernel p (y|x) defining a vector of
random variables Y with statistical properties depending on the state x. Let us
call this a state dependent random vector and denote it by Y (x). For instance,
the average 〈Y (x)〉 of Y (x) is

〈Y (x)〉 =

∫
y p (y|x) dy

The trasition to the dynamical systems formulation is made by using the method
of functional causal models [23] where any kernel describing a transition (like
those in Fig. 1) from a state x ∈ Rn into a state y ∈ Rm can be defined by a
function f : Rn ×Rnu → Rm so that

y = f (x, u)

where u ∈ Rnu is a vector of perturbances.
In particular, any realization of the sensor process as represented by the

kernel p (st+1|st, at) can be written as

st+1 = φ (st, at, ut+1) (1)

where ut is a vector of perturbances representing both the influence of purely
random processes and the influences of hidden variables. The latter, although
actually caused by a deterministic dynamics, may be corrupted by random influ-
ences on the starting conditions at least so that we may qualify the perturbances
quite generally as noise of a general nature.
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Special cases are easily obtained for the case that perturbances are weak.
By Taylor expanding with respect to u we obtain in leading order

st+1 = φ (st, at) + ρt+1 (2)

where φ (st, at) = φ (st, at, 0), ρt+1 = Qut+1, and the matrix Q is given by

Q (st, at) =
∂

∂u
φ (st, at, u)

∣∣∣∣
u=0

Q depending both on the state and the action in a deterministic way. In many
cases of practical interest, the state dependence of the noise can be neglected
and this is what we are dealing with in the present paper as a first step to-
wards a general approach to predicitive information maximization in stochastic
dynamical systems.

Using the policy given by the kernel p (at|st) we may introduce the kernel

p (st+1|st) =

∫
p (st+1|st, at) p (at|st) dat

corresponding to a structural model

st+1 = ψ (st, µt+1)

which, in the case of low noise µ, is equivalent to the functional model

st+1 = ψ (st) + ξt+1 (3)

(where now ψ (s) = ψ (s, 0), Q = ∂ψ/∂µ, and ξ = Qµ) in the way described
above. In linear systems, this decomposition is exact even for arbitrary noise so
that the results derived below for linear systems are exact as well.

3 Predictive information

The predictive information (PI) is the mutual information between the future
and the past, relative to some instant of time t, of the time series S

I (Spast;Sfuture ) =

〈
ln

p (Spast, Sfuture )

p (Spast) p (Sfuture)

〉
= H (Sfuture )−H (Sfuture |Spast)

(4)
where the averaging is over the joint probability p (Spast, Sfuture ). Note that in
the case of continuous variables, the individual entropy components H (Sfuture ),
H (Sfuture |Spast) may well be negative whereas the PI is always positive and
may exist even in cases where the individual entropies diverge. This is a very
favorable property deriving from the explicit scale invariance of the PI, see
below. Eq.4 simplifies considerably if S is a Markov process, see [1]. In this case
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the PI is given by the mutual information (MI) between two successive time
steps, i.e. instead of Eq. (4) we consider

I (St+1;St) =

〈
ln

p (St+1, St)

p (St+1) p (St)

〉
= H (St+1)−H (St+1|St) (5)

which simplifies the sampling process considerably. In experiments with a cou-
pled chain of robots done earlier [9] it was observed that the MI of just a single
sensor, one of the wheel counters of an individual robot, already yields essential
information on the behavior of the robot chain. It proved to be maximal if the
individual robots managed to cooperate so that the chain as a whole could navi-
gate effectively. This is remarkable in that a one-dimensional sensor process can
already give essential information on the behavior of a very complex physical
object under real world conditions. These results give us some encouragement
to study the role of PI and other information measures for relatively simple
sensor processes as is done in the present paper.

3.1 Example systems

In order to get some feeling on the behavior of the PI in simple models of the
sensorimotor loop we use Eq. (2) again

st+1 = φ (st, at) + ρt+1 (6)

ρ being state dependent in general and the controller is assumed to be given by
a kernel p (at|st) corresponding specifically to a structural model

at = K (st) + κt (7)

where at ∈ Rm is the vector of motor values the controller outputs at time t and
the actuator noise κ ∈ Rm is a realization of the stochastic vector κ. In order
to get some analytical results we assume both processes to be linear so that

K (s) = Cs and φ (s, a) = Ts+ V a (8)

the matrix T representing the contribution to the sensor process due to some
dynamics of the world alone and V is the sensorial response to the output
of the controller. This might seem an oversimplified system but it should be
remembered that many of the control systems studied in engineering are of this
kind.

Under the assumptions made, the sensor process is now

st+1 = Rst + ξt+1 (9)

where
R = T + V C (10)

and ξ = V κ+ ρ is the effective combination of controller and world noise.
In general, as explained above, the random parts of these expressions will

be state dependent. However we will use only additive noise terms (no state
dependence) in the following in order to get analytical results as a first step
towards more general situations.

8



3.2 Predictive information in linear control systems

Eq. (9) can be considered as an AR(1) process. Autoregressive models play an
important role in many branches of science and engineering so that there is a
large body of available results. In particular with Gaussian noise, measures like
predictive information, can be obtained in closed forms.

3.2.1 The process

Let us consider therefore the case of the process defined by Eq. (9) with

ξ ∼ N (0, D)

In the stationary state S is a Gaussian process as well

S ∼ N (0,Σs)

with mean zero and covariance matrix Σs (no state dependence for simplicity)
which can be obtained simply from the solution of Eq. (9)

st = Rts0 +

t−1∑
k=0

Rkξt+1−k (11)

as

Σs =

∞∑
k=0

RkDRk
T

(12)

where (Ep means averaging over the density distribution p of the noise)

D = Ep ξξ
T

and both the white noise property and Ep ξ = 0 was used. Alternatively, Σ is
shown easily to be the solution of the discrete Lyapunov equation

Σs = RΣsR
T +D (13)

3.2.2 Explicit expression

The conditional distribution for st+1 with st given is obtained directly as

p (st+1|st) = N (Rst, D) (14)

because of the additivity of the noise. Noting that the entropy does not depend
on the mean, we find

H (St+1|St) =
1

2
ln |D|+ n

2
ln 2πe2 (15)

where we use the notation
detM = |M |
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here and in the following wherever this does not lead to ambiguities.
The entropy of a Gaussian random vector S ∼ N (µ,Σs) is well known, see

[5]

H (S) =
1

2
ln |Σs|+

n

2
ln 2πe2

so that using Eq. (15)

I (St+1;St) =
1

2
ln |Σs| −

1

2
ln |D| (16)

which is the entropy of the state minus that of the noise. This additive decom-
position of the PI is a direct consequence of the linear dynamics plus additive
noise.

3.2.3 Properties

The PI displays a number of interesting properties. Well known but especially
noteworthy for robotics is the invariance of the PI against coordinate trans-
formations so that the PI of a process St is the same as that of a process
QSt for any regular matrix Q. This follows immediately from I (St+1;St) =
H (S)−H (St+1|St) and the fact that entropies obey

H (QS) = H (S) + ln |detQ| (17)

for any regular matrix Q. This also shows that the PI is independent of the
scaling of the variables which is very convenient for robotics applications.

More specifically, in the system considered one of the striking properties of
the PI is its preferentially dynamic nature. This is seen best by considering the
special case of isotropic noise, i.e.

D = σ2I (18)

where I is the unit matrix and σ2 measures the overall strength of the noise. In
this case we get the variance of the state directly from Eq. (12) as

Σs =

∞∑
k=0

RkDRkT = σ2
∞∑
k=0

RkRkT =
σ2

1−RRT
(19)

so that the PI is

I (St+1;St) = −1

2
ln det

(
I−RRT

)
(20)

which depends on the dynamical operator R only. We will give further below
an example where the dependence of the PI on the anisotropy of the noise is
made explicit.
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3.2.4 Further expressions

The PI can be rewritten in a number of different forms. In particular, using
|A| / |B| =

∣∣AB−1∣∣ and the Lyapunov equation we write

|D|
|Σs|

=
∣∣∣(Σs −RΣsR

T
)

(Σs)
−1
∣∣∣ =

∣∣∣(I−RΣsR
T

(Σs)
−1
)∣∣∣

Introducing

W = Σ
− 1

2
s RΣ

1
2
s

we obtain
|D|
|Σs|

=
∣∣(I−WWT

)∣∣
where

∣∣I +AMA−1
∣∣ = |I +M | and Σs = ΣTs was used. Hence we obtain the

predictive information also as

I (St+1;St) = −1

2
ln
∣∣I−WW T

∣∣ (21)

The predictive information is now expressed in terms of the so called pre-
whitened dynamical operator W which is a similarity transform of the bare
dynamical operator R by means of the covariance matrix Σ of the stochastic
process [7]. This generalizes the expression Eq. (20) to the case of anisotropic
noise in a straightforward way.

3.2.5 Approximations

From the computational point of view, the evaluation of the determinant may
be annoying in high dimensional systems. This can be avoided if the eigenvalues
of W are sufficiently small. Using

|I− εM | = 1 + εTr (M) +O
(
ε2
)

we obtain approximately∣∣I−WW T
∣∣ ≈ 1− Tr

(
WW T

)
so that by means of the cyclic invariance of the trace

I (St+1;St) ≈
1

2
Tr
(
WW T

)
=

1

2
Tr
(
RRT

)
Obviously the noise does not play any role even in the anisotropic case if the
dynamics is strongly damped.
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3.3 Summary

The present section has given explicit expressions for the PI of linear dynamical
systems with additive noise. These results are partly known already but we
worked them out again from the perspective of the sensorimotor loop. Remark-
able features of the PI are seen in its invariance against scale transformations of
the state variables which is very convenient for robotics applications. The more
interesting point is the preferentially dynamic nature of the PI. With additive
noise, the PI splits additively into a dynamical and a pure noise part, the latter
being irrelevant for the maximization task. The dynamical part is essentially
the entropy of the state variables which is seen to decouple completely from the
noise if the latter is isotropic. The general case is covered in the same way by
pre-whitening the dynamical operator. These results are encouraging for the
use of the PI in the dynamical systems approach to robotics.

4 Example stochastic oscillator

Let us now consider a two-dimensional system in order to study pertinent prop-
erties of the PI, in particular the interplay between the controller and the dy-
namics of the world. By way of example we consider a system with a damped
oscillation perturbed by noise, i.e. we consider Eq. (9)

st+1 = Rst + ξt+1

with specific expressions of the dynamical operator R. Moreover we put the
covariance matrix of the noise as

D = E ξξT = σ2

(
1−m 0

0 1 +m

)
This is sufficiently general since D can always be brought into a diagonal form
by using an orthogonal transformation of the state vector s. The specific way
of writing the diagonal elements has proven to simplify the expressions to be
derived in the following.

4.1 Controlling a random world

Let us start with the case that the deterministic part of the dynamics is deter-
mined by the controller alone, i.e. the intrinsic world dynamics is pure noise so
that T = 0 in (10). The controller is

a = Cs

with controller matrix C
C = cU (φ)

where U is a rotation matrix

U (φ) =

(
cosφ − sinφ
sinφ cosφ

)
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so that the dynamical operator is

R = cU (φ) (22)

The system executes with 0 < c < 1 a damped harmonic oscillation since the
state vector is rotated in each time step by the angle φ and compressed by the
factor c.

We find Σs from the solution of the discrete Lyapunov equation (Maple) as

Σs =

 2c2((c2−1)m+2) cos2 φ+(1−c4)m−(1+c2)
2

(c4−1)(1+c2)+4c2(1−c2) cos2 φ 2 (cosφ sinφ)m c2

(c2+1)2−4c2 cos2 φ

2 (cosφ sinφ)m c2

(c2+1)2−4c2 cos2 φ
− (c2+1)

2−m(c4−1)+2c2((c2−1)m−2) cos2 φ

(c4+c6−c2−1+(4c2(1−c2) cos2 φ))


The determinant can be written as

|Σs| =

(
1− m2

1 + 4c2φ

)
1

(c2 − 1)
2

where

c2φ =
c2 sin2 φ

(c2 − 1)
2

|Σs| is seen to have minima at φ = 0, π, . . . and maxima at π/2, 3π/2, . . .independently
of the values of m and c. Using |D| = 1−m2 we write the PI as

I (St+1;St) =
1

2
ln
|Σs|

1−m2
=

1

2
ln

1

(c2 − 1)
2 +

1

2
ln

1− m∗2

1−m2

or with the specific setting for R, cf. Eq. (22)

I (St+1;St) =
1

2
ln

1

1−RRT
+

1

2
ln
|D∗|
|D|

(23)

= Iiso (St+1;St) +
1

2
ln
|D∗|
|D|

(24)

where Iiso (St+1;St) is the PI with isotropic noise and D∗ is the noise matrix
with m replaced by

m∗ =
m√

1 + 4c2φ

which can be considered as a kind of re-scaled noise asymmetry reflecting the
interaction with the dynamics. Eq. (23) presents the PI as a term which depends
only on the dynamics of the system, like in the isotropic noise case plus a term
due to the interplay of the dynamics with the anisotropy of the noise.

The PI has the same extrema as |Σs| so that it is maximal if the deterministic
dynamics is a period 4 damped oscillation. A gradient ascent on the PI will
drive the system towards this frequency. Moreover, the PI is a monotonously
increasing function of c2 so that the gradient ascent will not only increase the
frequency up to the period 4 oscillation but also increase the noise amplification
so that the noise is increasingly amplified (Σs increases) by the dynamics of the
system.
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4.2 Resonance – A case for embodiment

A purely random and therefore void world is not the most interesting or typical
case. Instead the world will have a dynamics of its own and the question is
how the PI depends on the interplay between the controller and the world. Let
us consider the very simple case of a world dynamics given by an oscillatory
system, i.e. put T = wU (ω) and C = cU (φ) so that

R = cV U (φ) + wU (ω)

(we will use V = I for the sake of simplicity for a while) with c and w chosen
such that the eigenvalues of RRT are less than 1.

4.2.1 Isotropic noise

The case of isotropic noise can be considered explicitly since

I−RRT = (1− µ) I (25)

where
µ = c2 + w2 + 2cw cos (φ− ω)

so that, cf. Eq. (20)

I (St+1;St) = −1

2
ln (1− µ) (26)

where both 0 < c < 1 and 0 < w < 1. Assuming these values are such that
1 − (w + c)

2
> 0, I exists and is maximal if φ = ω i.e. if the controller is in

resonance with the dynamics of the world.
This can be connected to the idea of embodiment. Our system (without

controller) is driven by the noise into damped oscillations. Now assume that
we switch on the controller and let the latter adapt its frequency by gradient
ascending the PI. Then, the controller will bring gradually its frequency in
resonance with the intrinsic oscillation of the world without doing any frequency
analysis or the like. This is valid as long as we keep the strength factor c fixed.
The more general case is considered below.

It is important to remember, that these processes are of a completely dy-
namic nature so that there is no sampling of any probability kernels involved,
provided the world matrix T is known. The latter can be learned on-line what,
so to say, is the price to pay for not having to sample. The learning however
is done much more easily than the sampling, since learning here is a simple
supervised task.

4.2.2 Anisotropic noise

The preceding scenario requires that the mode is already active so that it is
represented explicitly in the world matrix T . In many cases of practical interest,
modes get excited only if the controller already insinuates a near-resonance
stimulation. However, if the noise is isotropic there is no dependence of the
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PI on the frequency of the controller, see above, so that the frequency space
would have to be searched by hand. But, as shown above, even the slightest in-
homogeneity of the noise leads to a frequency sweep through the whole frequency
space from frequency zero to the period 4 oscillation. If, during this sweep, a
mode in the world is excited and the world model is adapted to cover this
emerging feature sufficiently quickly, the resonance mechanism described above
will start dominating the adaptation so that the controller is driven towards the
intrinsic mode and amplifies the latter to maximum amplitude.

This mechanism shows not only how the PI maximization can lead to an
active search of the behavior space but also how, in this procedure, latent modes
of the world can be brought out. This is an even stronger point for the use of
PI maximization in embodied AI.

Of course, different to the isotropic noise case, this scenario is not completely
free of any sampling requirements. Nevertheless, since the sweeping effect sets
in as soon as there is any anisotropy of the noise at all, it would be sufficient
to have a very coarse sampling and start the adaptation process right from
the outset. The sampling can continue during the information maximization so
that, on the fly, the kernels may be improved.

4.3 The magic circle world

The resonance phenomenon is also present if, different to the preceding case,
the matrices for the controller and the world are not of the same structure. Let
us consider in particular the magic circle oscillator realized by the matrix

M (ω) =

(
1 ω
−ω 1− ω2

)
which, if used instead of U (ω), produces an (anharmonic) oscillatory system.

Its frequency is defined by the eigenvalues λ1/2 = 1− 1
2ω

2 ± iω
√

1− 1
4ω

2. The

eigenvalues are identical to those of the orthogonal matrix U (ω) in lowest order
of ω. Together with a controller defined by U (φ) we get the dynamical operator

R = cU (φ) + wM (ω)

which can again be analyzed in simple ways if the noise is assumed isotropic, cf.
Eq. (20). We note without going into the details that with small values of ω we
get a very precise resonance behavior. This is not surprising since with these
rotation angles the matrices U (ω) and M (ω) are nearly identical. However one
gets also for quite large values of ω a very good agreement in the frequencies.
The comparison is made via the imaginary parts of the eigenvalues of M (ω)
and the normalized dynamical operator P = R/

√
detR. Using c = .2 and

w = .1 we find for instance with ω = 0.5 the maximum of the PI at φ = 0.52
. The corresponding eigenvalues of M (ω) are 0.875 ± 0.48i and those of P are
0.87±0.49i. This means that the frequency of the controlled system is practically
identical to that of the intrinsic mode alone, i.e. information maximization tunes
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the controller to nearly complete resonance. The corresponding values for ω = 1
are φ = 1.15 with eigenvalues M (ω) at 0.5±0.87i and those of P at 0.43±0.90i
which means a deviation in frequencies of less than 5 percent in the region
−π/3 < ω < π/3.

We may conclude from this that, at least in the case considered, the PI is
maximal if the controller is (nearly) in resonance with an intrinsic mode of the
world even in the case that the world and controller are structurally different.

4.4 Summary

This section has considered the application of the PI concept to a specific two-
dimensional systems mimicking a sensorimotor loop with a controller that can
excite oscillatory motions. The world part (essentially the body of the robot)
of the sensorimotor loop consisted of (i) a pure noise, (ii) an oscillatory part
of the same dynamical structure as the controller, and (iii) an oscillator of
different structure (magic circle world). We have demonstrated that in the pure
noise case the anisotropy of the noise produces a frequency sweeping effect,
driving the system towards a period 4 oscillation which is the dynamics with
the highest predictive information. An interesting effect is observed if the world
is not just pure noise but is capable of an oscillatory dynamics of its own. In
that case, the PI is maximal if the controller is (nearly) in resonance with this
intrinsic mode of the world even in the case that the world and controller are
structurally different. This is encouraging, since maximizing the PI means (at
least in this simple example) to recognize and amplify the latent modes of the
robotic system. This is essentially what we need for the self-organization of
behavior by the maximization of the PI in the sensorimotor loop.

5 PI over several time steps

We may also consider the more general case of a larger step width τ , the deriva-
tion for the PI being given in the Appendix. The PI as a function of the lead
time τ is known to be a Lyapunov function for the process so that it decays
with increasing τ . More interestingly for our purpose, the landscape is seen to
become more and more complex with increasing τ . Let us consider the special
case of the purely random world and consider the landscape of the PI for a
special case, see Fig.2 which depicts for the case of c = .8 and m = 0.05 the de-
pendence on the rotation angle φ.The picture shows that instead of the period 4
oscillation observed in the single time step case, the oscillations with maximum
PI are now of much lower frequency, the frequency decreasing systematically
with increasing τ . Moreover, there are also local maxima at high frequency
oscillations but with a much lower value of the PI for τ > 1.
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Figure 2: The predictive information over τ time steps for the stochastic os-
cillator model as a function of the rotation angle φ for τ = 2 (upper), τ = 3
(middle), and τ = 4 (lower curve). Instead of the maximum at π/2 observed
for τ = 1 in the region 0 < φ < π, there are two global maxima and one or two
local maxima for the case of τ = 3 or τ = 4, respectively. The frequency of the
oscillations in the global maxima decreases with increasing τ and depends also
in a very intricate way on the damping constant α and the asymmetry of the
noise measured by m.
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6 Learning rules. The self-referential robotic
system

The PI is given in terms of the sensor values the robot produces in the course
of time. There is no domain specific knowledge invoked into this function.
We obtain a self referential robotic system when using the PI as the objective
function for the adaptation of the parameters of the controller. In particular we
may consider the gradient ascent on the MI

∆p = ε
∂I (St;St−1)

∂p

where p is any parameter of the controller of the robot. The properties of the
self-referential robotic system depends also on the choice of the learning rate ε
which actually has to be chosen small enough so that the time scales are well
separated. This, however, is a serious problem if the PI has to be sampled.

6.1 Explicit learning rules for the maximization of predic-
tive information

The results obtained above may show a way how to avoid or at least to smooth
the sampling problem. We have seen, that the PI in specific cases is a purely
dynamical quantity so that actually there is no sampling necessary at all. This is
the case if either the noise in the linear dynamical system is isotropic or, more
generally, if the dynamical operator describes a highly damped system. The
explicit learning rules in both cases can be obtained directly from the gradient
ascent on I (St+1|St) using Eq. (20) as

∆C = εV T
1

I−RRT
R (27)

The rule can be used as long as all eigenvalues of RRT are less than one.
This is an immediate consequence of the fact that the dynamics is diverging
if ever one of those eigenvalues exceeds one. When using the rule in practice
a damping term should be added. There are several choices possible, in the
present case it seems appropriate to keep the variances of the state variables at
finite values. This amounts to using

K = I (St+1;St)− λTr (Σs) (28)

as the new objective function to be maximized. The trace over Σs can be
evaluated from Eq. (12) by elementary means. In the case of isotropic noise we
get the rule, see the Appendix,

∆C = εV T
1

(I−RRT )
2

(
γI−RRT

)
R (29)
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where γ =
(
1− λ

ε

)
and 0 < λ < ε. The learning process is stationary if

RRT = γI

with PI

I (St+1|St) =
1

2
ln
ε

λ

meaning that all eigenvalues of R are equal to
√
γ in absolute value and RRT

is diagonal. When expressing R in terms of a singular value decomposition,
R = UMV T where U and V are rotation matrices and M is diagonal, we easily
conclude that R converges towards an orthogonal matrix multiplied by

√
γ.

The convergence process depends on the relation of λ and ε and on the initial
condition for R.

6.2 The Hebbian nature of the learning rule

The learning rule can be rewritten in many different forms. Useful for the prac-
tical applications is the avoidance of the matrix inversion or the sampling nec-
essary for the evaluation of Σs.

6.2.1 Stochastic gradient ascent rule

This can be done in the following way. Using Eq. (19) and D = σ2I we have(
I−RRT

)
= ΣsD

−1so that the learning rule is

∆C = εV TΣsR

where σ2 was absorbed into ε. The variance Σs of the state variables can, in
the sense of a stochastic gradient procedure, be invoked into the algorithm if
the learning rate ε is chosen small enough, so that the update of C in the time
step t is

∆C = εV T sts
T
t R (30)

This may be helpful in practical applications since it does not involve any matrix
inversion, the update is fully determined by the current value of the state vector

st. Adding of penalty terms needs some care since for instance
(
I−RRT

)−2
is

not given by Ep(s)
(
ssT
)2

. On the other hand, penalty terms like the one given
in Eq. (32) do not cause any problems.

6.2.2 Hebbian learning

The above rule can be still further modified in order to make a connection to
neural network learning paradigms. Let us introduce the new vectors ãt = V T st
and s̃t = RT st. In terms of these states we write the learning rule as (omitting
time indices)

∆Cij = εãis̃j (31)
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We may consider Cij as the synaptic strength of a linear neuron. Interpreting
ãi as signal at the output of the neuron i and s̃j as an input into the synapse,
the learning rule is now clearly Hebbian, since the update for the synapse is
given by the product of activities being available directly at the corresponding
ports. The analogy can be made even closer if we make contact with the error
back propagation rules which are central in the learning theory of layered feed
forward neural networks. For this purpose we consider the combination of the
controller matrix C and the world matrix V as a two-layer neural network of
linear neurons. We consider the dynamics

st+1 = V at + ξt+1

and interpret V a as the output of the top layer of the network so that (sum
over repeated indices)

(V a)i = g (Vijaj)

with a linear output function g (z) = z. The controller on its hand can be
written as

aj = g (Cjksk)

so that the deterministic part Rst of the full dynamics st+1 = Rst + ξt+1 can
be written as a two-layer neural network

(Rs)i = g (Vijaj) = g (Vijg (Cjksk))

The error back-propagation rule allows to propagate a signal at the output of
the network back to the lower layers and finally to the input of the network.
Propagating according to that rule st from the output of the network (top layer)
back to the output of the controller (bottom layer) yields

(ãt)i =
(
V T st

)
i

which, in the learning step, features as the output signal at the synapse. Prop-
agating this activity further down to the input of the network yields

(s̃t)j =
(
CT ãt

)
j

=
(
RT st

)
which is the input signal into the synapse Cij in the learning step, see Eq. (31).

6.3 The resonance effect

The result already reveals a specific feature of the predictive information max-
imization paradigm. Since the PI is invariant with respect to an arbitrary
orthogonal transformation of the state space, the learning will converge towards
some orthogonal matrix depending on the initial conditions and the values of
the parameters ε and λ.

This can be made more explicit in our specific resonance example. Using
Eq. (25) we find in this case, using RRT = µI and

µ = c2 + w2 + 2cw cos (φ− ω)
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that the condition of stationarity reads now

c2 + w2 + 2cw cos (φ− ω) = 1− λ

ε

with infinitely many solutions for c and φ realizing the same value of the PI.
This is a little disappointing since there is no pronounced resonance behavior

any more (the resonance was obtained with c fixed). A more detailed analysis
shows that there is an approach of φ towards ω. However since c increases
very rapidly the penalty term comes soon into play so that the convergence
of φ is stopped before it reaches the resonance frequency. This means that the
resonance phenomenon does not disappear altogether but that it is not complete.

The resonance can be reestablished by using appropriate penalty terms. For
instance, if using the typical weight decay term, i.e.

K = I (St+1;St)− λTr
(
CTC

)
(32)

instead of Eq. (28) we find in our special case that Tr
(
CTC

)
= c2 so that

K = −1

2
ln (1− µ)− λc2

We note without going into detail here that this will indeed drive φ towards
ω. Moreover, with this damping term, the resonance effect is observed also in
the case of an arbitrary parameterization of the controller matrix. However
this does work only if λ is chosen sufficiently large. If not so, the logarithmic
singularity at µ = 0 dominates the learning dynamics so that the penalty term
is overrun and the learning dynamics diverges.

This shows that there is a serious problem in using penalty terms in order
to keep the linear system in bounds. Of course, one could solve the problem for
instance by using a normalization of the controller matrix after each learning
step. The main problem, however, is a conceptual one. The point here is that
defining an appropriate penalty term is a domain specific task. This might work
for many specific applications but does not meet the challenge of finding a gen-
eral approach to the self-organization of behavior. Fortunately, these problems
disappear more or less if the sensorimotor loop is confined by nonlinearities like
the saturation properties of the involved neurons or a nonlinear sensor charac-
teristics. This has been proven already in the case of one-dimensional systems,
see [1], and will be discussed in the general case in a later paper. In particular,
it will be shown that the nonlinearities support the resonance phenomenon so
that nonlinearities are essential for the emergence of embodiment effects.

6.4 Summary

The aim of this section was the derivation of learning rules for the maximization
of the PI. We restricted ourselves to the case of linear systems and derived an
explicit update rule for the matrix C of the controller. The essential point is
that, in the case of isotropic noise at least, the rule is of a completely dynamical
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nature so that no sampling is necessary at all. Instead, the response matrix V
and the world matrix T have to be learned, but this is a supervised learning
task which is easy to achieve. Moreover, the learning rule has been transformed
into a purely local form, see Eq. (30) so that no matrix inversions are necessary.
This is of much interest from the practical point of view.

We have discussed several penalty terms (which are necessary in the case
of linear systems) and demonstrated that the inherent contingency of behaviors
emerging from PI maximization gives the opportunity to influence the course
of the learning process by appropriate penalty terms. In particular, the reso-
nance effect could be reestablished for more general parameterizations of the
controller. This supports our point of view that the PI maximization makes the
robot ”feel” latent behavioral modes, in the special case the existence of an os-
cillatory regime, like a locomotion pattern. Maximizing the PI via the learning
mechanism leads to the recognition and amplification of this mode. This may
also be understood as a kind of self-motivated exploration of bodily affordances
of embodied robots.

7 Conclusions

Can a robot develop its skills completely on its own, driven by the sole ob-
jective to gain more and more information about its body and its interaction
with the world? This aim raises immediately further questions like (i) what is
the relevant information for the robot and (ii) how can one find a convenient
learning rule that realizes the gradient ascent on this information measure. We
have studied the predictive information contained in the stream of sensor val-
ues as a tentative answer to the first question and, based on that, could give
exact answers to the second question for simple cases. We had to limit the
investigation to the case of linear controllers and sensorial responses in order to
get exact analytical results. Nevertheless, already in such a linear world there
are several effects which demonstrate the value of the information maximiza-
tion principle. In particular, we could show that the (anisotropic) noise makes
the system to explore its behavior space in a systematic manner, in the present
case the PI maximization made the controller of a stochastic oscillator system to
sweep through the space of available frequencies. More importantly, if the world
the controller is interacting with is hosting a latent oscillation, the controller
will learn by PI maximization to go into resonance with this intrinsic mode of
the world. This is encouraging, since maximizing the PI means (at least in
this simple example) to recognize and amplify the latent modes of the robotic
system. In a sense, by PI maximization the robot is able to detect its bodily
affordances and this may be interpreted as a tentative mathematical foundation
of morphological computation.

In the special case of isotropic noise the PI maximization principle lead to
simple learning rules which can be given a purely local formulation. In fact,
it needs only standard backpropagation together with a Hebbian learning step.
There is no need for sampling or doing any non-local operations. Of course, this
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is a result of the linearity of the system and the isotropy of the noise. However,
our preliminary results with non-linear systems indicate that a similar struc-
ture can be achieved also in the general case, at least in approximations. This
may help to bridge the gap between standard neural network realizations (with
supervised learning) which are so successful in robotics and the information
theoretic methods which so far are based on discretization and burdened with
high sampling efforts and involved learning rules. Hopefully our results will
help to pave the way for the application of information theoretic methods as
a reliable tool for the self-determined development of the behavior of complex
autonomous robots. Moreover, the approach may lead to concrete realizations
of concepts relevant for truly autonomous robots like internal motivation and
artificial curiosity.

Acknowledgement 1 Part of this work was completed during a stay of Nihat
Ay and Ralf Der at the CSIRO in Sydney, Australia. Hospitality and financial
support are gratefully acknowledged. Mikhail Prokopenko thanks the Max Planck
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8 Appendix

We derive here some results used in the text.

8.1 Predictive information over several time steps

The conditional distribution for st+τ given st is obtained by means of Eq. (11)
as

p (st+τ |st) = N
(
Rτst,Σst+τ|t

)
(33)

where (τ > 0)

Σst+τ|t =

τ−1∑
k=0

RkDRk
T

(34)

Writing

Σst+τ|t =

τ−1∑
k=0

RkDRk
T

=

∞∑
k=0

RkDRk
T

−
∞∑
k=τ

RkDRk
T

=

∞∑
k=0

RkDRk
T

−Rτ
∞∑
k=0

RkDRk
T

Rτ
T

we obtain the discrete Lyapunov equation for τ steps as

Σst+τ|t = Σs −RτΣsR
τT

Noting that the entropy does not depend on the mean, we find

H (St+τ |St) =
1

2
ln
∣∣Σst+τ|t∣∣+

n

2
ln 2πe2 (35)
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so that

I (St+τ ;St) =
1

2
ln

|Σs|∣∣Σst+τ|t∣∣ (36)

In analogy to the derivation of Eq. (21) we rewrite this as

I (St+τ ;St) = −1

2
ln
∣∣I−WτW

T
τ

∣∣ (37)

with the pre-whitened operator

Wτ = Σ
− 1

2
s RτΣ

1
2
s (38)

8.2 Derivation of the learning rule

We use
∂

∂Qij
ln detQ =

1

detQ

∂

∂Qij
detQ =

(
Q−1

)
ji

or more compactly
∂

∂Q
ln detQ =

1

QT

Putting Q = I−RRT we find

∂

∂Q
ln det

(
I−RRT

)
=

1

I−RRT
(39)

and by means of (sum over repeated indices)

∂

∂Rij
ln det

(
I−RRT

)
=
∂Qkl
∂Rij

Q−1kl = −∂RkmRlm
∂Rij

Q−1kl = Q−1il Rlj +Q−1ki Rkj

so that by the symmetry of Q we obtain

1

2

∂

∂R
ln det

(
I−RRT

)
=

1

I−RRT
R

Using R = V C + T we find eventually

1

2

∂

∂C
ln det

(
I−RRT

)
= V T

1

I−RRT
R

The derivation of the penalty term is obtained in the following way. Using
the cyclic invariance of the trace we get

Tr (Σs) = Tr

( ∞∑
k=0

RkDRk
T

)
= Tr

(
1

I−RTR
D

)
which is valid for any kind of noise. With isotropic noise we get

Tr (Σs) = σ2Tr

(
1

I−RTR

)
= σ2Tr

(
1

I−RRT

)
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and

∂

∂C
Tr

(
1

I−RRT

)
= −2Tr

(
1

I−RRT
V
∂C

∂C
RT

1

I−RRT

)
= −2V T

1

(I−RRT )
2R

so that we get (absorbing factors into λ)

∆C = εV T
1

I−RRT
R− λV T 1

(I−RRT )
2R

= εV T
1

I−RRT

(
I− λ

ε

1

I−RRT

)
R

which is easily transformed into that of the text by using γ = 1− λ
ε .
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