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Abstract

Shapiroet al. [2005; 2006], presented a framework
for representing goal change in the situation calcu-
lus. In that framework, agents adopt a goal when
requested to do so (by some agentreqr ), and they
remain committed to the goal unless the request is
cancelled byreqr . A common assumption in the
agent theory literature, e.g.,[Cohen and Levesque,
1990; Rao and Georgeff, 1991], is that achieve-
ment goals that are believed to be impossible to
achieve should be dropped. In this paper, we incor-
porate this assumption into Shapiroet al.’s frame-
work, however we go a step further. If an agent be-
lieves a goal is impossible to achieve, it is dropped.
However, if the agent later believes that it was mis-
taken about the impossibility of achieving the goal,
the agent might readopt the goal. In addition, we
consider an agent’s goals as a whole when making
them compatible with their beliefs, rather than con-
sidering them individually.

1 Introduction
Shapiroet al. [2005; 2006], presented a framework for repre-
senting goal change in the situation calculus. In that frame-
work, agents adopt a goal when requested to do so (by some
agentreqr ), and they remain committed to the goal unless
the request is cancelled byreqr . A common assumption in
the agent theory literature, e.g.,[Cohen and Levesque, 1990;
Rao and Georgeff, 1991], is that achievement goals that are
believed to be impossible to achieve should be dropped. In
this paper, we incorporate this assumption into Shapiroet
al.’s framework, however we differ from previous approaches
in two respects. If an agent believes a goal is impossible to
achieve, it is dropped. However, if the agent revises its be-
liefs, it may later come to believe that it was mistaken about
the impossibility of achieving the goal. In that case, the agent
shouldreadoptthe goal. To our knowledge, this has not been
considered in previous approaches. In addition, most frame-
works1 consider goals in isolation when checking compatibil-

1Bell and Huang[1997] consider the compatibility of all of an
agent’s goals with its beliefs, but they do not consider the possibility
of readopting a goal previously believed impossible.

ity with beliefs. However, it could be the case that each goal
individually is compatible with an agent’s beliefs, but theset
of all goals of the agent is incompatible with its beliefs.

In Sec. 2, we present the situation calculus and Reiter’s
action theories, which form the basis of our framework.
In Sec. 3, we present Shapiroet al.’s framework, and in
Sec. 4, we show how to extend the framework to take into
consideration the dynamic interactions between beliefs and
goals. Some properties of the new framework are presented
in Sec. 5. In Sec. 6, we sketch how to extend the framework
further so that achievement goals that are believed to have
been already achieved are dropped by the agents. We con-
clude in Sec. 7.

2 Representation of Action and Beliefs

The basis of our framework for goal change is an action the-
ory [Reiter, 2001] based on the situation calculus[McCarthy
and Hayes, 1969; Levesqueet al., 1998]. The situation calcu-
lus is a predicate calculus language for representing dynam-
ically changing domains. A situation represents a possible
state of the domain. There is a set of initial situations cor-
responding to the ways the agents believe the domain might
be initially. The actual initial state of the domain is repre-
sented by the distinguished initial situation constant,S0. The
term do(a, s) denotes the unique situation that results from
the agent doing actiona in situations. Thus, the situations
can be structured into a set of trees, where the root of each
tree is an initial situation and the arcs are actions. The se-
quence of situations that precedes a situations in its tree is
calledhistory of s. Predicates and functions whose value
may change from situation to situation (and whose last argu-
ment is a situation) are calledfluents. For instance, we might
use the fluent INROOM(Agt,R1, S) to represent the fact that
agentAgt is in roomR1 in situationS. The effects of actions
on fluents are defined using successor state axioms[Reiter,
2001], which provide a succinct representation for both ef-
fect axioms and frame axioms[McCarthy and Hayes, 1969].

We will be quantifying over formulae, so we assume that
we have an encoding of formulae as first-order terms. As
shown by De Giacomoet al. [2000], this is laborious but
straightforward. It includes introducing constants for vari-
ables, defining substitution, introducing aHoldspredicate to



define the truth of formulae, etc. We assume we have such an
axiomatization, and so we will freely quantify over formulae
here (using first-order quantifiers). To simplify notation,we
ignore the details of the encoding and use formulae directly
instead of the terms that represent them.

We will also be using lists of formulae, so we need an ax-
iomatization of lists. We do not present the details here but
such a formalization is well known. We use the functions
car(l), cdr(l), cons(ψ, l), reverse(l), andremove(ψ, l); and
the relationmember(ψ, l) with their usual meanings.nil de-
notes the empty list. We will also use lists of formulae (with-
out repetitions) to represent finite sets of formulae, and there-
fore use finite sets when it is convenient, along with the usual
set functions and relations.

To axiomatize a dynamic domain in the situation calculus,
we use Reiter’s[2001] action theory, which consists of (1)
successor state axioms for each fluent; (2) initial state axioms,
which describe the initial state of the domain and the initial
mental states of the agents; (3) unique names axioms for the
actions, and domain-independent foundational axioms (given
below); and (4) the axioms to encode formulae as terms, and
to define lists of (terms for) formulae.2

Unique names axioms are used to ensure that distinct ac-
tion function symbols denote different actions. For distinct
action function symbols,a1 anda2, we need an axiom of the
following form:3

Axiom 2.1

a1(~x) 6= a2(~y).

Also, for each action function symbol,a, we need an axiom
of the following form:

Axiom 2.2

a(~x) = a(~y) ⊃ ~x = ~y.

We want the situations to be the smallest set generated by
sequences of actions starting in an initial situation. We ax-
iomatize the structure of the situations withfoundational ax-
iomsbased on the ones listed in Levesqueet al.[1998] for the
language of the “epistemic situation calculus”. We first define
the initial situations to be those that have no predecessors:

Init(s′)
def
= ¬∃a, s.s′ = do(a, s)

We declareS0 to be an initial situation.

Axiom 2.3

Init(S0)

2Action theories normally also include axioms to specify thedis-
tinguished predicatePoss(a, s) which is used to described the con-
ditions under which it is physically possible to execute an action,
however to simplify notation, we omit the use ofPosshere and as-
sume that it is always possible to execute all actions.

3We adopt the convention that unbound variables are universally
quantified in the widest scope.

We also need an axiom stating thatdo is injective.

Axiom 2.4

do(a1, s1) = do(a2, s2) ⊃ (a1 = a2 ∧ s1 = s2)

The induction axiom for situations says that if a property
P holds of all initial situations, andP holds for all successors
to situations if it holds for s, thenP holds for all situations.

Axiom 2.5

∀P.[(∀s.Init(s) ⊃ P (s)) ∧ (∀a, s.P (s) ⊃ P (do(a, s)))] ⊃
∀sP (s).

We now define precedence for situations. We say thats
strictly precedess′ if there is a (non-empty) sequence of ac-
tions that takes to s′.

Axiom 2.6

∀s1, s2.s1 ≺ s2 ≡ (∃a, s.s2 = do(a, s) ∧ (s1 � s)),

wheres1 � s2
def
= s1 = s2 ∨ s1 ≺ s2 denotes thats1 precedes

s2.

Although belief change plays a large role in this paper,
the focus is on the goal change framework. Belief change
frameworks in Reiter’s action theory framework have been
developed[Shapiroet al., 2000; Shapiro and Pagnucco, 2004;
Shapiro, 2005], however we will not assume a particular
framework here. Instead, we will make a few general as-
sumptions about the belief change framework as needed. In
particular, we assume a possible worlds approach (withB as
the accessibility relation) using situations as possible worlds.
The accessible situations are the ones that are used to deter-
mine the beliefs of the agent, as usual. These would cor-
respond to, e.g., the most plausible accessible situationsof
Shapiroet al. [2000] or simply the situations that the agent
considers possible in a framework without plausibilities over
situations. Therefore, we assume that the language contains
a distinguished predicateB(agt , s′, s). We also assume that
the agents’ beliefs are always consistent:

Axiom 2.7

∀s∃s′B(agt , s′, s).

The beliefs of the agent are defined as those formulae true in
all the accessible situations:

Bel(agt , φ, s) def
= ∀s′.B(agt , s′, s) ⊃ φ[s′].

Here,φ is a formula that may contain the distinguished con-
stantNow instead of its (final) situation argument.φ[s] de-
notes the formula that results from substitutings for Now in
φ. When the intended meaning is clear, we may suppress this
situation argument ofφ.



3 Goal Change

Shapiroet al. [2005; 2006], presented a framework for repre-
senting goal change in the situation calculus. In that frame-
work, agents adopt goals when requested to do so (by some
agentreqr ) and they remain committed to their goals unless
the request is cancelled byreqr . One problem with this ap-
proach is that an agent will retain a goal even if it believes
the goal is impossible to achieve. We address this problem
here. We first introduce Shapiroet al.’s [2006] framework,
and then show how it can be changed to better reflect the in-
tuitive interactions between beliefs and goals.

An agent’s goals are future oriented. For example, an agent
might want some property to hold eventually, i.e., the agent’s
goal is of the formEv(ψ), for some formulaψ. We eval-
uate formulae such as these with respect to a path of situa-
tions rather than a single situation, and we call such formu-
laegoal formulae. Cohen and Levesque[1990] used infinite
time-lines to evaluate such formulae, but for simplicity, we
evaluate goal formulae with respect to finite paths of situa-
tions which we represent by pairs of situations,(Now,Then),
such thatNow � Then. Now corresponds to the “current
time” on the path of situations defined by the sequence of
situations in the history ofThen. Goal formulae may con-
tain two situation constants,Now and Then. For exam-
ple,∃r.INROOM(JOHN, r,Now)∧¬INROOM(JOHN, r,Then)
could be used to denote the goal that John eventually leaves
the room he is in currently. Ifψ is a goal formula thenψ[s, s′]
denotes the formula that results from substitutings for Now
ands′ for Then. When the intended meaning is clear, we may
suppress these situation arguments of goal formulae.

Following Cohen and Levesque[1990], Shapiro et al.
model goals using an accessibility relation over possible
worlds (situations, in our case). The accessible worlds are
the ones that are compatible with what the agentwantsto be
the case. Shapiroet al.’s W accessibility relation, like theB
relation, is a relation on situations. Intuitively,W (agt , s′, s)
holds if in situations, agt considers that ins′ everything that
it wants to be true is actually true. For example, if the agent
wants to become a millionaire in a situationS, then in all sit-
uationsW -related toS, the agent is a millionaire, but these
situations can be arbitrarily far in the future.

Following Cohen and Levesque[1990], the goals of the
agent should be compatible with what it believes. The situ-
ations that the agent wants to actualize should be on a path
from a situation that the agent considers possible. Therefore,
the situations that will be used to determine the goals of an
agent will be theW -accessible situations that are also com-
patible with what the agent believes, in the sense that there
is B-accessible situation in their history. We will say thats′

Bagt,s-intersectss′′ if B(agt , s′′, s) ands′′ � s′. We will
suppressagt or s if they are understood from the context.
Shapiroet al. define the goals ofagt in s to be those formu-
lae that are true in all the situationss′ that areW -accessible
from s and thatB-intersect some situation,s′′:

GoalSLL(agt , ψ, s)
def
=

∀s′, s′′.W (agt , s′, s) ∧B(agt , s′′, s) ∧ s′′ � s′ ⊃
ψ[s′′, s′].

Note thats′′ corresponds to the “current situation” (or the
current time) in the path defined bys′. We define a similar
accessibility relationC below and defineGoal in the same
way but usingC instead ofW .

Shapiroet al. specify how actions change the goals of
agents. They do not give a successor state axiom forW di-
rectly, instead they use an auxiliary predicate, REQUESTED.
REQUESTEDrecords which goals have been requested of and
adopted by an agent, as well as which situations should be
dropped fromW to accommodate these requests. When a
request is cancelled, the corresponding goal (and dropped sit-
uations) are removed from the REQUESTEDrelation. A re-
quested goal is adopted by an agent if the agent does not cur-
rently have a conflicting goal. This maintains consistency of
goals. REQUESTED(agt , ψ, s′, s) holds if some agent has re-
quested thatagt adoptψ as a goal in situations and this re-
quest causesagt to cease to want situations′. Here is the
successor state axiom for REQUESTED:

Axiom 3.1
REQUESTED(agt , ψ, s′, do(a, s)) ≡
((∃reqr .a = REQUEST(reqr , agt , ψ) ∧

W−(agt, ψ, a, s′, s)) ∨
(REQUESTED(agt , ψ, s′, s) ∧
¬∃reqr .a = CANCELREQUEST(reqr , agt , ψ))),

whereW− is defined below. An agent’s goals are expanded
when it is requested to do something by another agent. After
the REQUEST(requester , agt , ψ) action occurs,agt should
adopt the goal thatψ, unless it currently has a conflicting goal
(i.e., we assume agents are maximally cooperative). There-
fore, the REQUEST(requester , agt , ψ) action should cause
agt to drop any paths inW whereψ does not hold. This
is taken into account in the definition ofW−:

W−(agt , ψ, a, s′, s)
def
=

∃s′′.B(agt , s′′, s) ∧ s′′ � s′ ∧ ¬ψ[do(a, s′′), s′].

According to this definition,s′ will be dropped fromW ,
due to a request forψ, if s′ B-intersects somes′′ such that
ψ does not hold on the path(do(a, s′′), s′). The reason that
we check whether¬ψ holds at(do(a, s′′), s′) rather than at
(s′′, s′) is to handle goals that are relative to the current time.
If, for example,ψ states that the very next action should be
to get some coffee, then we need to check whether the next
action after the request is getting the coffee. If we checked
¬ψ at (s′′, s′), then the next action would be theREQUEST
action.

We also have to assert that initially no requests have been
made. We do so with the following initial state axiom:

Axiom 3.2

Init(s) ⊃ ¬REQUESTED(agt , ψ, s′, s).

Shapiroet al. definedW in terms of REQUESTED. s′ is
W -accessible froms iff there is no outstanding request that
causeds′ to become inaccessible.

W (agt , s′, s)
def
= ∀ψ.¬REQUESTED(agt , ψ, s′, s))



4 Dynamic interactions between goals and
beliefs

A common assumption in the agent theory literature[Cohen
and Levesque, 1990; Rao and Georgeff, 1991] is that achieve-
ment goals that are believed to be impossible to achieve
should be dropped. However, we go a step further. If some
time later, an agent revises its beliefs and decides that thegoal
is achievable after all, the agent should reconsider and possi-
bly readopt the goal. Also, the previous focus has been on
individual goals that are incompatible with an agent’s beliefs.
However, it could be the case that each goal is individually
compatible with an agent’s beliefs but the set of goals of the
agent is incompatible, so some of them should be dropped.

First, we make precise the notion of a finite set of goal
formulae being compatible with an agent’s beliefs. We say
that a finite set of goal formulaeα is B-consistentin situation
s, if there exists a path(s′′, s′) such thats′′ is B-accessible
from s, and none of the goals inα causeds′ to be dropped
fromW .

BCons(agt , α, s)
def
=

∃s′, s′′.B(agt , s′′, s) ∧ s′′ � s′ ∧
∀ψ.ψ ∈ α ⊃ ¬REQUESTED(agt , ψ, s′, s).

If α is a singleton, we may replace it with its element.

To make its goals compatible with its beliefs, an agent
takes the set of requested formulae which may be B-
inconsistent and chooses a maximally B-consistent set to be
its goals. We assume that each agent has a preorder (≤)
over goal formulae corresponding to a prioritization of goals.
ψ ≤ ψ′ indicates thatψ has equal or greater priority thanψ′.
This ordering could be used to, e.g., represent that an agent
gives different priorities to requests from different sources,
or to give higher priority to emergency requests. The agent
chooses a maximally B-consistent subset of the requested for-
mulae respecting this ordering. To simplify notation, we fix
here a single such ordering for all agents, but in practice dif-
ferent agents will have different orderings, and it is not diffi-
cult to generalize the definitions to accommodate this.

Let:

reqs(agt , s)
def
= {ψ | ∃s′REQUESTED(agt , ψ, s′, s)},

denote the set of formulae that have been requested foragt in
situations. Since there are no requests initially, and an action
adds at most one goal formula to the set of requests, it is easy
to see that this set is finite in any situation. Therefore, we
can consider the set of requests in a situation to be a list. The
list is sorted according to the priority ordering (≤), using the
recursively defined functionsort(α), which takes a finite set
α and returns a list of elements ofα sorted according to≤:4

Axiom 4.1

sort(α) = l ≡
if α = nil then l = nil else

l = cons(chooseMin(α),
sort(remove(chooseMin(α), α)),

4if P then A else B is an abbreviation for(P ⊃ A)∧(¬P ⊃ B)

wherechooseMinis a function which takes a finite set of for-
mulae and returns an element of the set that is minimal in≤:

Axiom 4.2

chooseMin(α) = x ⊃ ∀y ∈ α.y ≤ x ⊃ x ≤ y.

After the set of requests is sorted, a maximally B-consistent
sublist is selected that respects the ordering, using the func-
tion makecons, which is defined using a recursively defined
auxiliary functionmakecons′.5

Axiom 4.3

makecons′(agt , l, s) = l′ ≡
if l = nil then l′ = nil else

if BCons(agt , cons(car(l),
makecons′(agt , cdr(l), s)), s) then

l′ = cons(car(l),makecons′(agt , cdr(l), s)) else
l′ = makecons′(agt , cdr(l), s).

makecons(agt , l, s) = reverse(makecons′(agt ,
reverse(l), s)).

In other words, the listα is checked starting from the end
to see if the last element is B-consistent with the result of
recursively making the rest of the list B-consistent. If it is B-
consistent, then it is added to the result, otherwise it is left out.
Finally, the resulting list is reversed to restore the ordering.

This list is used to define our accessibility relation for
goals. First, we define CHOSEN(agt , ψ, s′, s) (in analogy to
Shapiroet al.’s REQUESTED), which holds ifψ was chosen
by agt and that choice should causes′ to be dropped from the
accessibility relation (i.e., REQUESTED(agt , ψ, s′, s) holds).

CHOSEN(agt , ψ, s′, s)
def
=

member(ψ,makecons(sort(reqs(agt , s)), s)) ∧
REQUESTED(agt , ψ, s′, s).

We define a new accessibility relation for goals,
C(agt , s′, s), based on the chosen set of goal formulae rather
than the requested set. Intuitively,s′ is a situation that the
agent wants to realize in situations. We say thatC(agt , s′, s)
holds ifs′ is a situation that was not caused to be dropped by
any chosen goal formulaψ:

C(agt , s′s)
def
= ∀ψ¬CHOSEN(agt , ψ, s′, s).

Finally, the goals of the agent are defined analogously to
the way it was done by Shapiroet al., but usingC instead of
W :

Goal(agt , ψ, s) def
=

∀s′, s′′.C(agt , s′, s) ∧B(agt , s′, s) ∧ s′′ � s′ ⊃
ψ[s′′, s′].

5A similar function was defined in Booth and Nittka[2005]. This
way of handling preferences can also be viewed as a special case of
[Brewka, 1989].



5 Properties

We now consider some properties of goal change. LetΣ con-
sist of the encoding axioms, the axioms defining lists, and
Axioms 2.1–4.3. Our first result is that the agents’ goals are
always (simply) consistent.

Theorem 5.1

Σ |= ∀agt , s.¬Goal(agt ,FALSE , s).

As we have discussed, it should be the case that if an agent
believes a goalψ is impossible to achieve then the agent
should drop the goal. For this theorem, we assume thatψ
is an achievement goal, i.e., of the form eventuallyψ′ for
some goal formulaψ′. The theorem states that if an agent
believes thatψ is impossible to achieve, then the agent does
not have the goalEv(ψ). We need to give a definition forEv
to be used both inside theBel operator and theGoal opera-
tor. Since belief formulae take a situation as an argument and
goal formulae take a path as an argument, we need two defi-
nitions in order to use them in the two contexts, therefore, we
overload the definition.

In the belief context,Ev(ψ, s) takes a single situation ar-
gument. It holds if there exists a path(s′′, s′) in the future of
s such thatψ[s′′, s′] holds.

Ev(ψ, s)
def
= ∃s′′, s′.s � s′′ ∧ s′′ � s′ ∧ ψ[s′′, s′].

In the goal context,Ev(ψ, s, s′) takes a path (a pair of sit-
uations) as an argument. It holds if there is a situations′′ in
the future ofs such thatψ[s′′, s′] holds.

Ev(ψ, s, s′)
def
= ∃s′′.s � s′′ ∧ s′′ � s′ ∧ ψ[s′′, s′].

Note that we suppress the situation arguments ofEv when it
is passed as an argument toBel or Goal.

Theorem 5.2

Σ |= ∀agt , ψ, s.Bel(agt ,¬Ev(ψ), s) ⊃
¬Goal(agt ,Ev(ψ), s).

As a corollary, we have a result about belief contraction. If
an agent hasEv(ψ) as a goal ins but after an actiona occurs,
the agent believesψ is impossible to achieve, then the agent
drops the goal thatEv(ψ).

Corollary 5.3

Σ |= ∀agt , a, ψ, s.Goal(agt ,Ev(ψ), s) ∧
Bel(agt ,¬Ev(ψ), do(a, s)) ⊃

¬Goal(agt ,Ev(ψ), do(a, s)).

We also have a result concerning the expansion of goals. If
an agent gets a request forψ, it will not necessarily adoptψ
as a goal, for example, if it has a conflicting higher priority
goal. But ifψ is the highest priority goal formula, and it is
B-consistent, it should be adopted as a goal. We say that a
goal formulaψ is highest priority among a finite set of goal

formulaeα, if the priority ofψ is at least as high as the prior-
ity of any goal formula in the set, and any goal formula in the
set whose priority is at least as high asψ is equal toψ.

Hp(ψ, α)
def
= (∀ψ′ ∈ α.ψ ≤ ψ′) ∧

(∀ψ′′ ∈ α.ψ′′ ≤ ψ ⊃ ψ′′ = ψ′).

For this theorem, we need an assumption about the belief
change framework. Namely, it must be the case that request
actions are not “belief producing”. More precisely, if a situ-
ation s′′ is accessible after a request action was executed in
situations, thens′′ came about by executing the same request
action in a situations′ accessible froms. In other words, suc-
cessor situations are not dropped from theB relation after a
request action is executed.

Axiom 5.4

B(agt , s′′, do(REQUEST(reqr , agt , ψ), s)) ⊃
∃s′.s′′ = do(REQUEST(reqr , agt , ψ), s′) ∧B(agt , s′, s).

Theorem 5.5

Σ ∪ {Axiom 5.4} |= ∀agt , ψ, reqr , s.
BCons(agt , ψ, do(REQUEST(reqr , agt , ψ), s)) ∧
Hp(ψ, ({ψ} ∪ reqs(agt , s))) ⊃

Goal(agt , ψ, do(REQUEST(reqr , agt , ψ), s)).

6 Future Work

Another interaction between achievement goals and beliefsis
that once an agent believes that an achievement goal has been
realized, it should drop that goal. We have not addressed this
yet, but it will not be difficult to add it to our framework, as
described in the following. In the context of belief change,
the agent may believe that a goal has been achieved but later
change its mind. In this case, the agent should first drop its
achievement goal, but later readopt it after the mind change.
Therefore, we need to check whether it is the case that agent
believes that an achievement goalψ has been false continu-
ously since the last request forψ. If notψ, should be dropped.
This can be formalized in the situation calculus as follows.
We first define a predicatePrev(a, s′, s), which holds iff the
last occurrence ofa in the history ofs occurs just before sit-
uations′.

Prev(a, s′, s)
def
=

∃s′′.s′ = do(a, s′′) ∧ s′ � s ∧
∀s∗, a∗.s′ ≺ do(a∗, s∗) � s ⊃ a 6= a∗.

Then, we say thatψ is live in situations, if the agent believes
thatψ has been continuously false since that last request for
ψ:

Live(ψ, s)
def
=

Bel(agt ,
(∃s′′, reqr .Prev(request(reqr , agt , ψ), s′′,Now) ∧

∀s∗, s∗
1
.s′′ � s∗ � Now∧ s′′ � s∗

1
� s′′ ⊃

¬ψ[s∗
1
, s∗]),

s).



If ψ is believed to have been already achieved, it should
be dropped regardless of the agent’s other goals and should
therefore not be taken into account when determining the
maximally B-consistent set. Therefore, for all goalsψ s.t.
¬Live(ψ, s), we removeψ from reqs(agt , s) before it is
passed tomakecons. This ensures thatψ will not be chosen
and will therefore not be a goal of the agent.

7 Conclusion

In this paper, we extended a previous framework for goal
change so that agents drop goals that are believed impossible
to achieve. To our knowledge this is the first framework to
take into account the possibility that the agents change their
minds about the impossibility of their goals. When this hap-
pens the agents may readopt goals that were previously be-
lieved to be impossible to achieve. Some properties about
goal consistency, contraction, and expansion were shown. We
also sketched how to further extend the framework so that
agents will drop achievement goals that are believed to be al-
ready achieved. Again, agents might later change their mind
about whether the goal has been already achieved and possi-
bly readopt the goal.
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