
Linköping Electronic Articles in
Computer and Information Science

Vol. 6(2001): nr 1

Linköping University Electronic Press
Linköping, Sweden

http://www.ep.liu.se/ea/cis/2001/001/

Enabling knowledge representation on the
Web by extending RDF Schema

Jeen Broekstra Michel Klein Stefan Decker
Dieter Fensel Frank van Harmelen Ian Horrocks



Published on February 2, 2001 by
Linköping University Electronic Press

581 83 Linköping, Sweden

Linköping Electronic Articles in
Computer and Information Science

ISSN 1401-9841
Series editor: Erik Sandewall

c©2001 Jeen Broekstra, Michel Klein et al.
Typeset by the author using LATEX

Formatted using étendu style

Recommended citation:
<Author>. <Title>. Linköping Electronic Articles in

Computer and Information Science, Vol. 6(2001): nr 1.
http://www.ep.liu.se/ea/cis/2001/001/. February 2, 2001.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)

for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,

including making copies for classroom use.
This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be

permanently accessible using the URL stated above,
unchanged, and permanently equal to the archived printed copies

at least until the expiration of the publication period.

For additional information about the Linköping University
Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.



Abstract

Recently, there has been a wide interest in using ontologies on the Web. As a basis

for this, RDF Schema (RDFS) provides means to define vocabulary, structure and

constraints for expressing metadata about Web resources. However, formal semantics

are not provided, and the expressivity of it is not enough for full-fledged ontological

modeling and reasoning. In this paper, we will show how RDFS can be extended in

such a way that a full knowledge representation (KR) language can be expressed in

it, thus enriching it with the required additional expressivity and the semantics of this

language. We do this by describing the ontology language OIL as an extension of

RDFS. An important advantage of our approach is a maximal backward compatability

with RDFS: any meta-data in OIL format can still be partially interpreted by any

RDFS-only-processor. The OIL extension of RDFS has been carefully engineered so

that such a partial interpretation of OIL meta-data is still correct under the intended

semantics of RDFS: simply ignoring the OIL specific portions of an OIL document yields

a correct RDF(S) document whose intended RDFS semantics is precisely a subset of

the semantics of the full OIL statements. In this way, our approach ensures maximal

sharing of meta-data on the Web: even partial interpretation of meta-data by less

semantically aware processors will yield a correct partial interpretation of the meta-

data. We conclude that our method of extending is equally applicable to other KR

formalisms.



1

1 Introduction

Currently, computers are changing from single isolated devices into entry points into a worldwide
network of information exchange and business transactions (cf. [Fensel, 2000]). Support in data,
information, and knowledge exchange is becoming the key issue in current computer technology. On-
tologies will play a major role in supporting information exchange processes in various areas. Recently,
the notion of ontology has become widespread in fields such as intelligent information integration, coop-
erative information systems, information retrieval, electronic commerce, and knowledge management.
The reason ontologies are becoming so popular is in large part due to what they promise: a shared
and common understanding of some domain that can be communicated between people and applica-
tion systems. Because ontologies aim at consensual domain knowledge, their development is often a
cooperative process involving different people, possibly at different locations.

Many definitions of ontologies have been given in the last decade, but one that, in our opinion,
best characterizes the essence of an ontology is based on the related definitions by [Gruber, 1993]: An
ontology is a formal, explicit specification of a shared conceptualisation. A conceptualisation refers
to an abstract model of some phenomenon in the world which identifies the relevant concepts of that
phenomenon. Explicit means that the type of concepts used and the constraints on their use are
explicitly defined. Formal refers to the fact that the ontology should be machine understandable, i.e.
the machine should be able to interpret the semantics of the information provided. Shared reflects the
notion that an ontology captures consensual knowledge, that is, it is not restricted to some individual,
but accepted by a group.

Using ontologies, semantic annotations on Web resources will allow structural and semantic def-
initions of documents, providing completely new possibilities: intelligent search instead of keyword
matching, query answering instead of information retrieval, document exchange between departments
via ontology mappings, and definition of views on documents.

RDF Schema [Brickley and Guha, 2000] provides means to define vocabulary, structure and con-
straints for expressing metadata about Web resources. However, formal semantics for the primitives
defined in RDF Schema are not provided, and the expressivity of these primitives is not enough
for full-fledged ontological modeling and reasoning. To perform these tasks, an additional layer
on top of RDF Schema is needed. Tim Berners-Lee calls this layered architecture the Semantic
Web [Berners-Lee, 1998].

At the lowest level of the Semantic Web a generic mechanism for expressing machine readable
semantics of data is required. The Resource Description Framework (RDF) [Lassila and Swick, 1999]
is this foundation for processing metadata, providing a simple data model and a standardized syntax
for metadata. Basically, it provides the language for writing down factual statements. The next layer
is the schema layer (provided by the RDF Schema specification [Brickley and Guha, 2000]). We will
show how a formal knowledge representation language can be used as the third, logical, layer. We will
illustrate this by defining the ontology language OIL [Fensel et al., 2000a, Horrocks et al., 2000] as an
extension of RDF Schema.

OIL (Ontology Inference Layer), a major spin-off from the IST project On-To-Knowledge1 [Fensel et al., 2000b],
is a Web-based representation and inference layer for ontologies, which unifies three important aspects
provided by different communities: formal semantics and efficient reasoning support as provided by
Description Logics, epistemological rich modeling primitives as provided by the Frame community,
and a standard proposal for syntactical exchange notations as provided by the Web community.

The content of the paper is organized as follows. In section 2 we provide a short introduction to
RDF and RDF Schema. Section 3 provides a very brief introduction into OIL. Section 4 illustrates
in detail how RDF Schema can be extended, using OIL as an example knowledge representation
language. The result is an RDF Schema definition of OIL primitives, which allows one to express any

1On-To-Knowledge: Content-driven Knowledge-Management Tools through Evolving Ontologies (IST-1999-
10132). Project partners are the Vrije Universiteit Amsterdam (VU); the Institute AIFB, University of Karl-
sruhe, Germany; AIdministrator, the Netherlands; British Telecom Laboratories, UK; Swiss Life, Switzerland;
CognIT, Norway; and Enersearch, Sweden. http://www.ontoknowledge.org/

http://www.ontoknowledge.org/


2

OIL ontology in RDF syntax. This enables the added benefits of OIL, such as reasoning support and
formal semantics, to be used on the Web, while retaining maximal backward compatability with ’pure’
RDF. Finally, we provide some conclusions and recommendations in section 6.

2 RDF and RDF Schema

In this section we will discuss the main features of RDF and RDF Schema (or RDFS for short) and
we will critically review some of their design decisions.

2.1 Introduction to RDF

A prerequisite for the Semantic Web is machine-processable semantics of the information. The Re-
source Description Framework (RDF) [Lassila and Swick, 1999] is a foundation for processing meta-
data; it provides interoperability between applications that exchange machine-understandable infor-
mation on the Web. Basically, RDF defines a data model for describing machine processable semantics
of data. The basic data model consists of three object types:

• Resources: A resource may be an entire Web page; a part of a Web page; a whole collection of
pages; or an object that is not directly accessible via the Web; e.g. a printed book. Resources
are always named by URIs.

• Properties: A property is a specific aspect, characteristic, attribute, or relation used to describe
a resource.

• Statements: A specific resource together with a named property plus the value of that property
for that resource is an RDF statement.

These three individual parts of a statement are called, respectively, the subject, the predicate, and
the object. In a nutshell, RDF defines object-property-value-triples as basic modeling primitives and
introduces a standard syntax for them. An RDF document will define properties in terms of the
resources to which they apply. For example:

<rdf:RDF>

<rdf:Description about="http://www.w3.org">

<Publisher>World Wide Web Consortium</Publisher>

</rdf:Description>

</rdf:RDF>

states that http://www.w3.org (the subject) has as publisher (the predicate) the W3C (the object).
Since both the subject and the object of a statement can be resources, these statements can be linked
in a chain:

<rdf:RDF>

<rdf:Description about="http://www.w3.org/Home/Lassila">

<Creator rdf:resource="http://www.w3.org/staffId/85740"/>

</rdf:Description>

<rdf:Description about="http://www.w3.org/staffId/85740">

<Email>lassila@w3.org</v:Email>

</rdf:Description>

</rdf:RDF>

States that http://www.w3.org/Home/Lassila (the subject) is created by staff member no. 85740 (the
object). In the next statement, this same resource (staff member 85740) plays the role of subject to
state that his email address is lassila@w3.org. Finally, RDF statements are also resources, so that
statements can be applied recursively to statements, allowing their nesting.

All this leads to the underlying datamodel being a labelled hyper-graph, with each statement being
a predicate-labelled link between object and subject. The graph is a hyper-graph since each node can
itself again contain an entire graph.



3

2.2 Introduction to RDF Schema

The modeling primitives offered by RDF are very basic2. Therefore, the RDF Schema specifica-
tion [Brickley and Guha, 2000] defines further modeling primitives in RDF. That is, RDF Schema
extends (or: enriches) RDF by giving an externally specified semantics to specific resources. e.g., to
rdfs:subclassOf, to rdfs:Class etc. It is only because of this external semantics that RDF Schema is
useful. Moreover, this semantics cannot be captured in RDF - if it could then there would be no
need for RDFS. OIL stands in a similar relationship to RDFS - by defining a semantics for specific re-
sources we further extend (or: enrich) RDF Schema. This allows OIL to capture meaning that cannot
be captured in RDFS, and this is where the added value is. Furthermore, we will be careful to create
this extension to RDF Schema in such a way that a partial interpretation without the additional OIL
semantics will still yield a valid RDF Schema interpretation.

Despite the similarity in their names, RDF Schema fulfills a different role than XML Schema does.
XML Schema, and also DTDs, prescribes the order and combination of tags in an XML document.
In contrast, RDF Schema only provides information about the interpretation of the statements given
in an RDF data model, but it does not constrain the syntactical appearance of an RDF description.
Therefore, the definition of OIL in RDFS that will be presented in this document will not provide
constraints on the structure of an actual OIL ontology.

In this section we will briefly discuss the overall structure of RDFS and its main modeling primi-
tives.

2.2.1 The data model of RDF Schema

Figure 1 pictures the subclass-of hierarchy of RDFS and figure 2 pictures the instance-of relation-
ships of RDFS primitives according to [Brickley and Guha, 2000]. The ‘rdf’ prefix refers to the RDF
name space (i.e., primitives with this prefix are already defined in RDF) and ‘rdfs’ refers to new
primitives defined by RDFS. Note that RDFS uses a non-standard object-meta model: the properties
rdfs:subClassOf, rdf:type, rdfs:domain and rdfs:range are used both as primitive constructs in the
definition of the RDF schema specification and as specific instances of RDF properties. This dual role
makes it possible to view e.g. rdfs:subClassOf as an RDF property just like other predefined or newly
introduced RDF properties, but introduces a self referentiality into the RDF schema definition, which
makes it rather unique when compared to conventional model and meta modeling approaches, and
makes the RDF schema specification very difficult to read and to formalize, cf. [Nejdl et al., 2000].

2.2.2 The modeling primitives of RDF Schema

In this section, we will discuss the main classes, properties, and constraints in RDFS.

rdfs:Resource

rdfs:Class rdfs:ConstraintResource rdf:Property

rdfs:ConstraintProperty rdfs:ContainerMembershipProperty

Figure 1: The subclass-of hierarchy of modeling primitives in RDFS.

2Actually they correspond to binary predicates of ground terms, where, however, the predicates may be
used as terms, as well.



4

rdfs:Resource

rdf:Property rdfs:ContainerMembershipProperty

rdfs:ConstraintProperty

rdfs:Literalrdfs:ConstraintResource

rdfs:Class

Figure 2: The instance-of relationships of modeling primitives in RDFS.

• Core classes are rdfs:Resource, rdf:Property3, and rdfs:Class. Everything that is described by
RDF expressions is viewed to be an instance of the class rdfs:Resource. The class rdf:Property is
the class of all properties used to characterize instances of rdfs:Resource, i.e., each slot / relation
is an instance of rdf:Property. Finally, rdfs:Class is used to define concepts in RDFS, i.e., each
concept must be an instance of rdfs:Class.

• Core properties are rdf:type, rdfs:subClassOf, and rdfs:subPropertyOf. The rdf:type relation
models instance-of relationships between resources and classes. A resource may be an instance of
more than one class. The rdfs:subClassOf4 relation models the subsumption hierarchy between
classes and is supposed to be transitive. Again, a class may be subclass of several other classes,
however, a class can neither be a subclass of its own nor a subclass of its own subclasses, i.e.,
the inheritance graph is cycle-free. The rdfs:subPropertyOf relation models the subsumption
hierarchy between properties. If some property P2 is a rdfs:subPropertyOf another property P1

, and if a resource R has a P2 property with a value V , this implies that the resource R also has
a P1 property with value V . Again, the inheritance graph is supposed to be cycle-free.

• Core constraints are rdfs:ConstraintResource, rdfs:ConstraintProperty, rdfs:range, and rdfs:domain.
rdfs:ConstraintResource defines the class of all constraints. rdfs:ConstraintProperty is a sub-
set of rdfs:ConstraintResource and rdf:Property covering all properties that are used to define
constraints. At the moment, it has two instances: rdfs:range and rdfs:domain that are used
to restrict range and domain of properties. It is not permitted to express two or more range
constraints on a property. For domains this is not enforced and is interpreted as the union of
the domains.

3 OIL

In this section we will give a very brief description of the OIL language; more details can be found in
[Horrocks et al., 2000]. A small example ontology in OIL is provided below.

ontology-container
title “African Animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description “A didactic example ontology

describing African animals and plants”
description.release “2.0”
publisher “I. Horrocks”
type “ontology”

format “pdf”
identifier

“http://www.ontoknowledge.org/oil/oil-rdfs.pdf”
source“http://www.africa.com/nature/animals.html”
language “en-uk”

ontology-definitions
slot-def eats

inverse is-eaten-by
slot-def has-part

3Note, that in this sense a property is an instance of a class.
4It is not really clear from the RDFS specification whether rdfs:subClassOf can be applied to rdf:Property.

This seems possible because the latter is also an instance of rdfs:Class.



5

inverse is-part-of
properties transitive

slot-def weight
range (min 0)
properties functional

slot-def colour
range string
properties functional

class-def animal
class-def plant
disjoint animal plant
class-def tree

subclass-of plant
class-def branch

slot-constraint is-part-of
has-value tree

class-def leaf
slot-constraint is-part-of

has-value branch
class-def defined carnivore

subclass-of animal
slot-constraint eats

value-type animal
class-def defined herbivore

subclass-of animal

slot-constraint eats
value-type (plant or
(slot-constraint is-part-of has-value plant))

disjoint carnivore herbivore
class-def mammal

subclass-of animal
class-def elephant

subclass-of herbivore mammmal
slot-constraint eats

value-type plant
slot-constraint colour

has-filler “grey”
class-def defined african-elephant

subclass-of elephant
slot-constraint comes-from

has-filler Africa
class-def defined indian-elephant

subclass-of elephant
slot-constraint comes-from

has-filler India
disjoint-covered elephant by african-elephant indian-elephant
——– instance information ——–
instance-of Africa continent
instance-of Asia continent
related is-part-of India Asia

This language has been designed so that:

1. it provides most of the modeling primitives commonly used in frame-based and Description
Logic (DL) oriented Ontologies;

2. it has a simple, clean and well defined first-order semantics;

3. automated reasoning support, (e.g., class consistency and subsumption checking) can be pro-
vided. The FaCT system [Bechhofer et al., 1999], a DL reasoner developed at the University of
Manchester, can be (and has been) used to this end [Stuckenschmidt, 2000].

It is envisaged that this core language will be extended in the future with sets of additional primitives,
with the proviso that full reasoning support may not be available for ontologies using such primitives.

An ontology in OIL is represented via an ontology container and an ontology definition part. For
the container, we adopt the components defined by Dublin Core Metadata Element Set, Version 1.15.

The ontology-definition part consist of an optional import statement, an optional rule-base and
class, slot and axiom definitions.

A class definition (class-def) associates a class name with a class description. This class de-
scription in turn consists of the type of the definition (either primitive, which means that the stated
conditions for class membership are necessary but not sufficient, or defined, which means that these
conditions are both necessary and sufficient), a subclass-of statement and zero or more slot-constraints.

The value of a subclass-of statement is a (list of) class-expression(s). This can be either a class
name, a slot-constraint, or a boolean combination of class expressions using the operators and, or and
not, with the standard DL semantics.

In some situations it is possible to use a concrete-type-expression instead of a class expression.
A concrete-type-expression defines a range over some data type. Two data types that are currently
supported in OIL are integer and string. Ranges can be defined using the expressions (min X),

5See http://purl.org/DC/

http://purl.org/DC/


6

(max X), (greater-than X), (less-than X), (equal X) and (range X Y). For example, (min 21)
defines the data type consisting of all the integers greater than or equal to 21. As another example,
(equal “xyz”) defines the data-type consisting of the string ”xyz”.

A slot-constraint (or property restriction) is a list of one or more constraints (restrictions) applied
to a slot (property). Typical constraints are:

• has-value (class-expr) Every instance of the class defined by the slot constraint must be
related, via the slot relation, to an instance of each class expression in the list.

• value-type (class-expr) If an instance of the class defined by the slot-constraint is related
via the slot relation to some individual x, then x must be an instance of each class-expression
in the list.

• max-cardinality n (class-expr) An instance of the class defined by the slot-constraint can
be related to at most n distinct instances of the class-expression via the slot relation (also
min-cardinality and, as a shortcut for both min and max, cardinality).

A slot definition (slot-def) associates a slot name with a slot definition. A slot definition specifies
global constraints that apply to the slot relation. A slot-def can consist of a subslot-of statement,
domain and range restrictions, and additional qualities of the slot, such as inverse slot, transitive,
and symmetric.

An axiom asserts some additional facts about the classes in the ontology, for example that the
classes carnivore and herbivore are disjoint (that is, have no instances in common). Valid axioms are:

• disjoint (class-expr)+ All of the class expressions in the list are pairwise disjoint.

• covered (class-expr) by (class-expr)+ Every instance of the first class expression is also an
instance of at least one of the class expressions in the list.

• disjoint-covered (class-expr) by (class-expr)+ Every instance of the first class expression
is also an instance of exactly one of the class expressions in the list.

• equivalent (class-expr)+ All of the class expressions in the list are equivalent (i.e. they have
the same instances).

The syntax of OIL is oriented towards XML and RDF. [Horrocks et al., 2000] defines a DTD and a
XML schema definition for OIL. [Klein et al., 2000] derives an XML Schema for writing down instances
of an OIL ontology. In this paper, we will derive the RDFS syntax of OIL.

4 OIL as an extension of RDF Schema

RDF provides basic modeling primitives: ordered triples of objects and links. RDFS enriches this
basic model by providing a vocabulary for RDF, which is assumed to have a certain semantics. In
this section we will provide a careful analysis of the relation between RDFS and OIL by defining
OIL in RDFS, using existing vocabulary where possible and extending RDFS with OIL primitives
where necessary. The complete schema can also be found at http://www.ontoknowledge.org/oil/
rdf-schema/. The RDFS serialization of the example from the previous section is available at http:
//www.ontoknowledge.org/oil/a-animals.rdfs.

4.1 The ontology container and import mechanism

The outer box of the OIL specification in RDFS is defined by the XML prologue and the namespace
definitions xmlns:rdf and xmlns:rdfs, which refer to RDF and RDFS, respectively. Namespace defini-
tions make externally defined RDF constructs available for local use. Therefore, the OIL specification
uses RDF and RDFS, and an actual ontology in OIL has namespace definitions which make both the
RDF and RDFS definitions as well as the OIL specification itself available.

http://www.ontoknowledge.org/oil/rdf-schema/
http://www.ontoknowledge.org/oil/rdf-schema/
http://www.ontoknowledge.org/oil/a-animals.rdfs
http://www.ontoknowledge.org/oil/a-animals.rdfs


7

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#"

xmlns:oil="http://www.ontoknowledge.org/oil/rdfschema"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:dcq="http://purl.org/dc/qualifiers/1.1/"

<!-- The ontology defined in OIL with RDFS syntax-->

</rdf:RDF>

It is important to notice that namespace definitions are not import statements, and are therefore
not transitive. An actual ontology also has to define the namespaces for RDF and RDFS via xmlns:rdf
and xmlns:rdfs, otherwise, all elements of OIL that directly correspond to RDF and RDFS elements
would not be available.

The ontology-container of OIL provides metadata describing an OIL ontology. Because the
structure and RDF-format of the Dublin Core element set is used, it is enough to import the namespace
of the Dublin Core element set. Note that the fact that an OIL ontology should provide a container
definition is an informal guideline in its RDFS syntax, because it is not possible to enforce this in the
schema definition.

Apart from the container, an OIL ontology consists of a set of definitions. The import definition is
a simple list of references to other OIL modules that are to be included in this ontology. We make use
of the XML namespace mechanism to incorporate this mechanism in our RDFS specification. Notice
again that, in contrast to the import statement in OIL, inclusion via the namespace definition is not
transitive.

4.2 Class and attribute definitions

In OIL, a class definition links a class with a name, a documentation, a type, its superclasses, and
the attributes defined for it. In RDFS, classes are simply declared by giving them a name (with the
ID attribute). We will show how OIL class definitions can be written down in RDF, while trying to
make use of existing RDFS constructs as much as possible, but where necessary extending RDFS with
additional constructs (see table 1 and figure 3).We conform to the informal RDF guideline to start
property names with a lower-case letter, and class names with a capital.

To illustrate the use of these extensions, we will walk through them by means of some example
OIL class definitions that need to be represented in RDFS syntax:

class-def defined herbivore
subclass-of animal

slot-constraint eats
value-type ( plant or
(slot-constraint is-part-of has-value plant))

class-def elephant
subclass-of herbivore mammal
slot-constraint eats

value-type plant
slot-constraint colour

has-filler “grey”

The first defines a class ”herbivore”, a subclass of animal, whose instances eat plants or parts of
plants. The second defines a class ”elephant”, which is a subclass of both herbivore and mammal.

4.2.1 Defined classes and Primitive classes

We start by translating the first class definition. The header can be done in a straightforward manner,
using the rdfs:Class construct and the rdf:ID property to assign a name:



8

oil:ClassExpression

oil:And oil:Or oil:Not

oil:PropertyRestriction

oil:CardinalityRestriction

oil:DefinedClassoil:PrimitiveClass

oil:HasValueoil:ValueType

oil:MinCardinality oil:MaxCardinality

oil:Cardinality

oil:TransitiveProperty

oil:SymmetricProperty

oil:FunctionalProperty

oil:Axiom

oil:ConcreteTypeExpression
oil:Covering

oil:Cover oil:DisjointCover

oil:Equivalentoil:Disjoint

oil:BooleanExpression

oil:HasFiller

oil:Min

oil:Max oil:Range

oil:LessThanoil:GreaterThan

oil:Equal

oil:OneOf

rdfs:Resource

rdfs:ConstraintResource rdf:Propertyoil:Expression

rdfs:Class

Figure 3: The OIL extensions to RDFS in the subsumption hierarchy.

<rdfs:Class rdf:ID="herbivore"> </rdfs:Class>

From this definition it is not yet clear that this class is a defined class. We chose to introduce
two extra classes in the OIL namespace, named PrimitiveClass and DefinedClass. In a particular class
definition, we can use one of these two ways to express that a class is a defined class:

<rdfs:Class rdf:ID="carnivore">

<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/rdf-schema/#DefinedClass"/>

</rdfs:Class>

or:

<oil:DefinedClass rdf:ID="carnivore"> </oil:DefinedClass>

We will use the first method of serialization throughout this article, but it is important to realize
that both model exactly the same.

This way of making an actual class an instance of either DefinedClass or PrimitiveClass introduces
a nice object-meta distinction between the OIL RDFS schema and the actual ontology: using rdf:type
you can consider the class ”herbivore” to be an instance of DefinedClass. In OIL in general, if it is
not explicitly stated that a class is defined, the class is assumed to be primitive.



9

4.2.2 Class Subsumption

Next, we have to translate the subclass-of statement to RDFS. This also can be done in a straightfor-
ward manner, simply re-using existing RDFS expressiveness:

<rdfs:Class rdf:ID="herbivore">

<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/rdf-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#animal"/>

</rdfs:Class>

However, if one wants to define a class as a subclass of a class expression, one should use the
oil:subClassOf property.

4.2.3 Slot Constraints

We still need to serialize the slot constraint on the class ”carnivore”. In RDFS, there is no mechanism
for restricting the attributes of a class on a local level. This is due to the property-centric nature of
the RDF data model: properties are defined globally, with their domain description coupling them to
the relevant classes.

To overcome this problem, we introduce the oil:hasPropertyRestriction property, which is an
rdf:type of rdfs:ConstraintProperty (analogous to rdfs:domain and rdfs:range). Here we take full
advantage of the intended extensibility of RDFS. We also introduce oil:PropertyRestriction as a place-
holder class for specific classes of slot constraints, such as has-value, value-type, cardinality and so on.
These are all modeled in the OIL namespace as subclasses of oil:PropertyRestriction:

<rdfs:Class rdf:ID="ValueType">

<rdfs:subClassOf rdf:resource="#PropertyRestriction"/>

</rdfs:Class>

and similar for the other slot constraints. For the three cardinality constraints, an extra property
”number” is introduced, which is used to assign a concrete value to the cardinality constraints.

To connect a ValueType slot constraint with its actual values, such as the property it refers to and
the class it restricts that property to, we introduce a pair of helper properties. These helper properties
have no direct counterpart in terms of OIL primitives, but they serve to connect two classes. We define
a property oil:onProperty to connect a property restriction with the subject property, and a property
oil:toClass to connect the property restriction to the its class restriction.

In our example ontology, the first part of the slot constraint would be serialized using the primitives
introduced above as follows:

<rdfs:Class rdf:ID="herbivore">

<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#animal"/>

<oil:hasPropertyRestriction>

<oil:ValueType>

<oil:onProperty rdf:resource="#eats"/>

<oil:toClass> </oil:toClass>

</oil:ValueType>

</oil:hasPropertyRestriction>

</rdfs:Class>

If we would want to restrict the value type of a property to a string or a an integer, we could use
the toConcreteType property:

...

<oil:ValueType>

<oil:onProperty rdf:resource="#age"/>

<oil:toConcreteType rdf:resource="http://www.ontoknowledge.org/oil/rdf-schema/2000/11/10-oil-standard#Integer"/>

</oil:ValueType>

...



10

4.2.4 Class Expressions

The slot constraint has not been completely translated yet: the toClass element is not yet filled. Here
we come across a feature of OIL that is not available in RDFS: the class expression. A class expression
is an expression that evaluates to a class definition. Such an expression can be a simple class name, or
it can be a boolean expression of classes and/or slot constraints. In the example, we have a boolean
’or’ expression that evaluates to the class of all things that are plants or that are parts of plant.

We introduce oil:ClassExpression as a placeholder class6. A second placeholder class, oil:BooleanExpression,
is introduced as a subclass of ClassExpression to hold the operators ‘and’, ‘or’ and ‘not’ as subclasses.
Also, since a single class is a essentially a simple kind of class-expression, rdfs:Class itself should be a
subclass of oil:ClassExpression.

The ‘and’, ‘or’ and ‘not’ operators are connected to operands using the oil:hasOperand property.
This property again has no direct equivalent in OIL primitive terms, but is a helper to connect two
class-expressions, because in the RDF data model one can only relate two classes by means of a
Property.

In our example, we need to serialize a boolean or. The RDF Schema definition of the operator
looks like this:

<rdfs:Class rdf:ID="Or">

<rdfs:subClassOf rdf:resource="#BooleanExpression"/>

</rdfs:Class>

and the helper property is defined as follows:

<rdf:Property rdf:ID="hasOperand">

<rdfs:domain rdf:resource="#BooleanExpression"/>

<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

The fact that hasOperand is only to be used on boolean class expressions is expressed using
the rdfs:domain construction. This type of modeling stems directly from the RDF property-centric
approach.

Now we apply what we defined above to the example:

<rdfs:Class rdf:ID="herbivore">

<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#animal"/>

<oil:hasPropertyRestriction>

<oil:ValueType>

<oil:onProperty rdf:resource="#eats"/>

<oil:toClass>

<oil:Or>

<oil:hasOperand rdf:resource="#plant"/>

<oil:hasOperand>

<HasValue>

<oil:onProperty rdf:resource="#is-part-of"/>

<oil:toClass rdf:resource="#plant"/>

</HasValue>

</oil:hasOperand>

</oil:Or>

</oil:toClass>

</oil:ValueType>

</oil:hasPropertyRestriction>

</rdfs:Class>

Observe that the HasValue property restriction is not related to the class by a hasPropertyRestric-
tion property, but by a hasOperand property. This stems from the fact that the property restriction
plays the role of a boolean operand here.

6A placeholder class in the OIL RDFS specification is only used in the to apply domain- and rangerestrictions
to a group of classes, and will not be used in the actual OIL ontology.



11

4.2.5 Lists of statements

Now, we illustrate some more features by translating the second class definition, “elephant”.
The first bit is trivial:

<rdfs:Class rdf:ID="elephant"> </rdfs:Class>

Next, we need to translate the OIL subsumption statement to RDFS. In this statement, a list of
superclasses is given. In the RDFS syntax, we model these as seperate subClassOf statements:

<rdfs:Class rdf:ID="elephant">

<rdfs:subClassOf rdf:resource="#mammal"/>

<rdfs:subClassOf rdf:resource="#herbivore"/>

</rdfs:Class>

Next, we have two slot constraints. The first of these is a value-type restriction, and it is serialized
in the same manner as we showed in the ”herbivore” example:

<rdfs:Class rdf:ID="elephant">

<rdfs:subClassOf rdf:resource="#mammal"/>

<rdfs:subClassOf rdf:resource="#herbivore"/>

<oil:hasPropertyRestriction>

<oil:ValueType>

<oil:onProperty rdf:resource="#eats"/>

<oil:toClass rdf:resource="#plant"/>

</oil:ValueType>

</oil:hasPropertyRestriction>

</rdfs:Class>

4.2.6 Slot constraints to concrete types

The second slot constraint is a restriction to a particular concrete type. In OIL, a shortcut syntax for
such restrictions has been introduced in the form of a ”has-filler” primitive. We serialize this like we do
with the other slot constraints: we introduce a class oil:HasFiller and helper properties, oil:stringFiller
and oil:integerFiller, to connect to the value:

<oil:HasFiller>

<oil:onProperty rdf:resource="#colour"/>

<oil:stringFiller>grey</oil:stringFiller>

</oil:HasFiller>

In RDF(S), there is unfortunately no direct way to constrain the value of a property to a particular
datatype. Therefore, the range value of oil:stringFiller can not be constrained to contain only strings.
Only for clarity we created two subclasses of rdfs:Literal, named oil:String and oil:Integer.

<rdfs:Class rdf:ID="String">

<rdfs:comment>

The subset of Literals that are strings.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdfs:Class>

The range of the filler properties can now be set to the appropriate class, although it is still possible
to use any type of Literal. The semantics of rdfs:Literal are only that anything of this type is atomic,
i.e. it will not be processed further by an RDF processor. The fact that in this case it should be a
string value can only be made an informal guideline.

<rdf:Property ID="stringFiller">

<rdfs:domain rdf:resource="#HasFiller"/>

<rdfs:range rdf:resource="#String"/>

</rdf:Property>



12

Using all this, we get the following complete translation of the class ”elephant”:

<rdfs:Class rdf:ID="elephant">

<rdfs:subClassOf rdf:resource="#mammal"/>

<rdfs:subClassOf rdf:resource="#herbivore"/>

<oil:hasPropertyRestriction>

<oil:ValueType>

<oil:onProperty rdf:resource="#eats"/>

<oil:toClass rdf:resource="#plant"/>

</oil:ValueType>

<oil:HasFiller>

<oil:onProperty rdf:resource="#colour"/>

<oil:stringFiller>grey</oil:stringFiller>

</oil:HasFiller>

</oil:hasPropertyRestriction>

</rdfs:Class>

Observe that it is allowed to have more than one property restriction within the hasPropertyRe-
striction element.

Table 1: Class-definitions in OIL and the corresponding RDF(S) constructs

OIL primitive RDFS syntax type
class-def rdfs:Class class
subclass-of rdfs:subClassOf property
class-expression oil:ClassExpression class

(placeholder only)
and oil:And class

(subclass of BooleanExpression)
or oil:Or class

(subclass of BooleanExpression)
not oil:Not class

(subclass of BooleanExpression)
slot-constraint oil:PropertyRestriction class

(placeholder only)
oil:hasPropertyRestriction property
(rdf:type of rdfs:ConstraintProperty)
oil:CardinalityRestriction class
(placeholder only)
(subclass of oil:PropertyRestriction)

has-value oil:HasValue class
(subclass of oil:PropertyRestriction)

has-filler oil:HasFiller class
(subclass of oil:PropertyRestriction)

value-type oil:ValueType class
(subclass of oil:PropertyRestriction)

max-cardinality oil:MaxCardinality class
(subclass of oil:CardinalityRestriction)

min-cardinality oil:MinCardinality class
(subclass of oil:CardinalityRestriction)

cardinality oil:Cardinality class
(subclass of oil:CardinalityRestriction)



13

4.2.7 Conclusion

The serialization we propose gives us enough expressiveness to translate any possible OIL class defi-
nition to an RDF syntax. Use of RDF(S) specific constructs is maximized without sacrificing clarity
of the specification, to enable RDF agents that are not OIL-aware to understand as much of the
specification as possible, while retaining the possibility to translate back to OIL unambiguously.

In the next section, we will examine how to serialize global slot definitions.

4.3 Slot definitions

Both OIL and RDFS allow slots as first-class citizens of an ontology. Therefore, slot definitions in
OIL map nicely onto property definitions in RDFS. Also the ”subslot-of”, ”domain”, and ”range”
properties have almost direct equivalents in RDFS. In table 2, an overview of the OIL constructs and
the corresponding RDFS constructs is given.

There are a few subtle differences between domain and range restrictions in OIL and their equiv-
alents in RDFS. First, the specification of OIL is very clear on multiple domain and range restriction:
these are allowed, and the semantic is the intersection of the individual statements (conjunctive se-
mantics). In RDFS, multiple domain statements are allowed, but their interpretation is the union of
the classes in the statements (disjunctive semantics). This limits the reasoning capabilities of RDFS
drastically7.

Despite these semantics for domain, a Property can have at most one range restriction in RDFS.
However, according to discussions on the rdf-interest mailinglist the semantics of domain and range
will very likely change in the next release of RDFS. We already anticipated on such a change, and
interpret both multiple domain and multiple range restrictions with conjunctive semantics.

Secondly, in contrast to RDFS, OIL not only allows classes as range and domain of properties, but
also class-expressions, and – for range – concrete-type expressions. It is not possible to reuse rdfs:range
and rdfs:domain for these sophisticated expressions, because of the conjunctive semantics of multiple
range statements: we cannot extend the range of rdfs:range or rdfs:domain, we can only restrict it.

Therefore, we introduced two new ConstraintProperties oil:domain and oil:range. They have the
same domain as their RDFS equivalent (i.e., rdf:Property), but have a broader range. For domain,
class expressions are valid fillers, for range both class expressions and concrete type expressions may
be used:

<rdfs:ConstraintProperty rdf:ID="domain">

<rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

<rdfs:range rdf:resource="#ClassExpression"/>

</rdfs:ConstraintProperty>

<rdfs:ConstraintProperty rdf:ID="range">

<rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

<rdfs:range rdf:resource="#Expression"/>

</rdfs:ConstraintProperty>

When translating a slot definition, rdfs:domain and rdfs:range should be used for simple (one class)
domain and range restrictions. For example:

slot-def gnaws
subslot-of eats
domain Rodent

will be translated into:

<rdf:Property rdf:ID="gnaws">

<rdfs:subPropertyOf rdf:resource="#eats"/>

<rdfs:domain rdf:resource="#Rodent"/>

</rdf:Property>

7For example, it is never possible to derive class membership from a domain statement when union semantics
are used.



14

For more complicated statements the oil:range or oil:domain properties should be used:

slot-def age
domain (elephant or lion)
range (range 0 70)

is in the RDFS representation:

<rdf:Property rdf:ID="age">

<oil:domain>

<oil:Or>

<oil:hasOperand rdf:resource="#elephant"/>

<oil:hasOperand rdf:resource="#lion"/>

</oil:Or>

</oil:domain>

<oil:range>

<oil:Range>

<oil:integerValue>0</oil:integerValue>

<oil:integerValue>70</oil:integerValue>

</oil:Range>

</oil:range>

</rdf:Property>

To specify that the range of a property is string or integer, we use our definitions of oil:String
and oil:Integer as subclasses of rdfs:Literal. For example, to state that the range of age is integer, one
could say:

<rdf:Property ID="age">

<rdfs:range

rdf:resource="http://www.ontoknowledge.org/oil/rdf-schema/2000/11/10-oil-standar

d#Integer"

</rdf:Property>

<oil:ValueType>

<oil:onProperty rdf:resource="#age"/>

<oil:toConcreteType

rdf:resource="http://www.ontoknowledge.org/oil/rdf-schema/2000/11/10-oil-standar

d#Integer"/>

</oil:ValueType>

However, global slot-definitions in OIL allow specification of more aspects of a slot than property
definitions in RDFS do. Besides the domain and range restrictions, OIL slots can also have an ”inverse”
attribute and qualities like ”transitive” and ”symmetric”.

We therefore added a property ”inverseRelationOf” with ”rdf:Property” as domain and range.
We also added the classes ”TransitiveProperty”, ”FunctionalProperty” and ”SymmetricProperty” to
reflect the different qualities of a slot. In the RDFS-serialization of OIL, the rdf:type property can be
used to add a quality to a property. For example, the OIL definition of:

slot-def has-part
inverse is-part-of
properties transitive

is in RDFS:

<rdf:Property rdf:ID="has-part">

<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/rdf-schema/#TransitiveProperty"/>

<oil:inverseRelationOf rdf:resource="#is-part-of"/>

</rdf:Property>

or, in the abbreviated syntax:



15

<oil:TransitiveProperty rdf:ID="has-part">

<oil:inverseRelationOf rdf:resource="#is-part-of"/>

</oil:TransitiveProperty>

This way of translating the qualitities of properties features the same nice object-meta distinction
between the OIL RDFS schema and the actual ontology as the translation of the ”type” of a class
(see section 4.2). In an actual ontology, the property ”has-part” can be considered as an instance of a
TransitiveProperty. Note that it is allowed to make a property an instance of more than one class, and
thus giving it multiple qualities. Note that this way of representing qualities of properties in RDFS
follows the proposed general approach of modeling axioms in RDFS, presented in [Staab et al., 2000].
In this approach, the same distinction between language-level constructs and schema-level constructs
is made.

One alternative way of serializing the attributes of properties would be to define the qualities
”transitive” and ”symmetric” as subproperties of rdf:Property. Properties in the actual ontology (e.g.
”has-part”) would in their turn be defined as subProperties of these qualities (e.g. transitiveProperty).
However, this would mixup the use of properties at the OIL-specification level and at the actual
ontology level.

A third way would be to model the qualities as subproperties of rdf:Property again, but to define
properties in the actual ontology as instances (rdf:type) of such qualities. In this aproach, the object-
meta level distinction is preserved. However, we dislike the use of rdfs:subPropertyOf at the meta-level,
because then rdfs:subPropertyOf has two meanings, at the meta-level and at the object-level.

We therefore prefer the first solution because of the clean distinction between the meta and object
level.

Table 2: Slot-definitions in OIL and the corresponding RDF(S) constructs.

OIL primitive RDFS syntax type
slot-def rdf:Property class
subslot-of rdfs:subPropertyOf property
domain rdfs:domain property

oil:domain property
range rdfs:range property

oil:range property
inverse oil:inverseRelationOf property
transitive oil:TransitiveProperty class
transitive oil:FunctionalProperty class
symmetric oil:SymmetricProperty class

4.4 Axioms

Axioms in OIL are factual statements about the classes in the ontology. They correspond to n-ary
relations between class expressions, where n is 2 or greater.

RDF only knows binary relations (properties). Therefore, we cannot simply map OIL axioms
to RDF properties. Instead, we chose to model axioms as classes, with helper properties connect-
ing them to the class expressions involved in the relation. Since axioms can be considered objects,
this is a very natural approach towards modeling them in RDF (see also [Staab and Mädche, 2000,
Staab et al., 2000]). Observe also that binary relations (properties) are modeled as objects in RDFS as
well (i.e., any property is an instance of the class rdf:Property). We simply introduce a new primitive
alongside rdf:Property for relations with higher arity (see figure 3).

We introduce a placeholder class oil:Axiom, and model specific types of axioms as subclasses:



16

<rdfs:Class ID="Disjoint">

<rdfs:subClassOf rdf:resource="#Axiom"/>

</rdfs:Class>

and likewise for Equivalent.
We also introduce a property to connect the axiom object with the class expressions it relates

to each other: oil:hasObject is a property connecting an axiom with an object class expression. For
example, to serialize the axiom that herbivores, omnivores and carnivores are (pairwise) disjoint:

<oil:Disjoint>

<oil:hasObject rdf:resource="#herbivore"/>

<oil:hasObject rdf:resource="#carnivore"/>

<oil:hasObject rdf:resource="#omnivore"/>

</oil:Disjoint>

Since in a disjointness axiom (or an equivalence axiom) the relation between the class expressions is
bidirectional, we can connect all class expressions to the axiom object using the same type of property.

However, in a covering axiom (like cover or disjoint-cover), the relation between class expressions
is not bidirectional: one class expression plays the role of covering, several other class expressions play
the role of being part of that covering.

For modeling covering axioms, we introduce a seperate placeholder class, oil:Covering, which is a
subclass of oil:Axiom. The specific types of coverings available are modeled as subclasses of oil:Covering
again:

<rdfs:Class ID="Cover">

<rdfs:subClassOf rdf:resource="#Covering"/>

</rdfs:Class>

<rdfs:Class ID="DisjointCover">

<rdfs:subClassOf rdf:resource="#Covering"/>

</rdfs:Class>

Furthermore, two additional properties are introduced: oil:hasSubject, to connect a covering axiom
with its subject, and oil:isCoveredBy, which is a subproperty of oil:hasObject, to connect a covering
axiom with the classes that cover the subject.

For example, we serialize the axiom that the class animal is covered by carnivore, herbivore,
omnivore, and mammal (i.e. every instance of animal is also an instance of at least one of the other
classes).

<oil:Cover>

<oil:hasSubject rdf:resource="#animal"/>

<oil:isCoveredBy rdf:resource="#carnivore"/>

<oil:isCoveredBy rdf:resource="#herbivore"/>

<oil:isCoveredBy rdf:resource="#omnivore"/>

<oil:isCoveredBy rdf:resource="#mammal"/>

</oil:Cover>

4.5 Restrictions to valid expressions

In the previous sections we have shown how the knowledge representation constructs in OIL can be
defined as an extension to RDF Schema. With these constructs, every OIL ontology can be fully
expressed in an RDF Schema representation. However, it was not possible to define the extension in
such a way that all schemas that follow it are also valid OIL ontologies. In other words, there are
some restrictions to valid ontologies that are not expressible in the RDF Schema extension.8

First, there is a problem with datatypes. It cannot be enforced that instances of oil:String are really
strings or that instances of oil:Integer are really integers. Consequently, it is syntactically possible to
state:

8With “valid” we mean: not allowed by the BNF grammer of OIL. From the logical point of view, there’s
nothing wrong with a statement like (dog and (min 0)), it just happens to be equivalent to the empty class.



17

<rdf:Property rdf:ID="weight">

<rdf:range>

<oil:Min>

<oil:integerValue>nonsense</oil:integerValue>

</oil:Min>

</rdf:range>

</rdf:Property>

This is due to the fact that the RDF Schema specification has (intentionally) not specified any primitive
datatypes. According to the specification, the work on data typing in XML itself should be the
foundation for such a capability.

Second, the RDF Schema specification of OIL does not prevent the intertwining of boolean ex-
pressions of classes with boolean expressions of concrete data types. Although a statement like (dog
and (min 0)) is not allowed in OIL, it is syntactically possible to state:

<oil:And>

<oil:hasOperand rdf:resource="#Dog">

<oil:hasOperand>

<oil:Min>

<oil:integerValue>0</oil:integerValue>

</oil:Min>

</oil:hasOperand>

</oil:And>

To prevent this kind of mixing, we could have introduced separate boolean operators for class ex-
pressions and concrete type expressions, but in our opinion, this would have made the schema too
convoluted.

Finally, another kind of problem is that the schema cannot prevent the unnecessary use of the OIL
variants of standard RDF Schema constructs, like oil:subClassOf, oil:range and oil:domain. Although
this unnecessary use does not affect the semantics of the ontology, it limits the backward compatibility
of ontologies with plain RDF Schema.

5 Backward compatability with RDF Schema

In this section we will discuss the backward compatability that we have achieved between the semantic
extension (OIL), and the underlying language (RDF Schema).

As for any ontology language, we can distinguish three levels: First, the ontology language, the
language in which to state for example class-definitions, subclass-relations, attribute-definitions etc.
In our case, RDF Schema and OIL. Second, the ontological classes, for example the classes ”giraffe”
or ”herbivore”, their subclass relationships, and their properties (such as eats). These are of course
expressed in the language of the first level. Third, the instances of the ontology, such as individual
giraffes or lions that belong to classes defined at the second level.

If we look at the existing W3C RDF/RDF Schema recommendation, these levels have the following
form:

1. the ontology language is of course RDF Schema;

2. specific classes, their properties and relations are therefore written in RDF Schema, eg:

<rdfs:Class rdf:ID="herbivore">

<rdfs:subClassOf rdf:resource="#animal">

</rdfs:Class>

<rdf:Property rdf:ID="eats"/>

3. instances are written in RDF (note: not RDF Schema), eg:

<rdf:Description about="http://www.cs.vu.nl/~frankh">

<rdf:type resource="#herbivore"/>

</rdf:Description>



18

If we consider a semantic extension of RDF Schema such as OIL, the situation is as follows:

1. The ontology language is OIL, but it is important to realise that OIL includes significant parts
of RDF Schema as a sublanguage

2. As a result, some class expressions (written in OIL) are actually also legal RDF Schema. For
example, besides being legal RDF Schema, the class definition of ”herbivore” in item 2 above
is also a legal example of an OIL class-definition. Of course, since OIL is an extension of RDF
Schema, not all OIL definitions are interpretable as RDF Schema definitions. For example, in

<rdfs:Class rdf:ID="herbivore">

<rdfs:subClassOf rdf:resource="#animal"/>

<oil:hasPropertyRestriction>

<oil:ValueType>

<oil:onProperty rdf:resource="#eats"/>

<oil:toClass>

<oil:Or>

<oil:hasOperand rdf:resource="#plant"/>

<oil:hasOperand>

<oil:HasValue>

<oil:onProperty rdf:resource="#is-part-of"/>

<oil:toClass rdf:resource="#plant"/>

</oil:HasValue>

</oil:hasOperand>

</oil:Or>

</oil:toClass>

</oil:ValueType>

</oil:hasPropertyRestriction>

</rdfs:Class>

the semantics of the hasPropertyRestriction statement will not be interpretable by an RDF
Schema processor. The entire state is legal RDF syntax, so it can be parsed, but the intended
semantics of the property restriction itself can only be understood by an OIL-aware application.
Notice that the first subClassOf statement is still fully interpretable even by an OIL-unaware
RDF Schema processor.

3. OIL instances are written as RDF! This is an important consequence of the fact that the second
level is organised as an extension of RDF Schema.

The above shows that we have now achieved an important compatability result: even if an ontology
is written in the richer modelling language (OIL), a processor for the simpler ontology language (RDF
Schema) can still:

a) fully interpret all the instance information of the ontology, and

b) partially interpret the class-structure of the ontology. This can be achieved by simply ignoring
any statement not from the rdf or rdfs namespaces (in our example those from the oil namespace).
For example, in the above definition of ”herbivore”, an RDF Schema processor will interpret this
statement simply as stating that herbivores are a subclass of animals, and that they some other
property that it cannot interpret. This is a correct albeit partial interpretation of the definition.

Such partial interpretability of semantically rich meta-data by semantically poor is a crucial step
towards the sharing of meta-data on the Semantic Web. We cannot realistically hope that all of
the Semantic Web will be build on a single standard for semantically rich meta-data. The above
shows that multiple semantic modelling languages do not have to lead to meta-data that are totally
uninterpretable by others. Instead, simpler processors can still pick up as much of the meta-data from
rich processors as they can ”understand”, and safely ignore the rest in the knowledge that their partial
interpretation is still a correct with respect to the original intention of the meta-data.



19

6 Uncovered problems with RDF Schema

In the previous section we have shown that it is possible to define a formal knowledge representation
schema as an extension to RDFS, effectively implementing the ”third layer of the Semantic Web”.
However, there are still a few unsolved problems with the specification of OIL into RDFS.

First, we did not take into account a restriction on the rdfs:subClassOf statement, i.e. the restric-
tion that no cycles are allowed in the subsumption hierarchy. We think that this restriction should be
dropped: without cycles one cannot even represent equivalence between two classes — in our view this
is an essential modeling primitive for any knowledge representation language. Moreover, these kinds
of constraint significantly add to the complexity of parsing/validating RDF documents in a way which
we think would be highly undesirable. This is because they are really semantic constraints rather than
syntactic ones (they limit the kinds of models that can be represented), even if the reasoning required
in order to detect constraint violation is of a very basic kind.

Second, in contrast with RDFS, OIL allows more than one range restriction on a property. Al-
though this can be circumvented by defining a dummy superclass of all classes in the range restriction,
we see no reason for this restriction in RDFS. From a modeling point of view, allowing more than one
range restriction is a much cleaner solution.

During the process of extending RDFS, we encountered a couple of peculiarities in the RDFS
definition itself. The most striking of these is the non-standard object-meta model, as already discussed
in section 2.2.1. The main problem with this non-standard model is that some properties have a dual
role in the RDFS specification, both at the schema level and instance level (cf. [Nejdl et al., 2000]).
This makes it quite a challenge for modelers to understand the RDFS specification. We tried to make
this distinction clear in our extensions by using the rdf:type relationship consistently as an object-meta
relationship.

Furthermore, the semantics of several relationships are unclear. It is not obvious that the meaning
of a list of domain (or range) restrictions is the union of the elements. Also, the meaning of the
subPropertyOf relation with respect to the inheritance of the domain and range restrictions is unclear.

7 Related work

Work on ontology representation languages dates back to the work on frame-languages in the early
days of AI. However, efforts of designing ontology-representation languages that are Web-enabled only
date from recent years. The most prominent (or even: the only) efforts in this area have been SHOE
[Luke et al., 1996, Heflin and Hendler, 2000], Ontobroker [Fensel et al., 1998], OIL and DAML-ONT9,
and more recently, as a replacement for DAML-ONT, DAML+OIL10.

Of these, only the last three have been defined on top of RDF(S). Since DAML+OIL is essentially
a merger between OIL and DAML-ONT, we will focus on the comparison of our own proposal (OIL)
to DAML-ONT.

DAML-ONT shares with our own proposal the principle that an ontology language should maintain
maximum backwards compatibility with existing web standard languages, and in particular RDF
Schema. The difference between OIL and DAML-ONT lies in the degree to which the languages
succeed in maximising the ontological content that can be understood by an “RDF Schema agent” (ie.
an application that understands RDF Schema but does not recognise the language specific extensions,
OIL or DAML-ONT). Unlike OIL, DAML-ONT is built on top of RDFS in a way that allows little
if any ontology content to be understood by an RDFS agent. In OIL, for example, stating simple
subclass relationships between classes is done using the RDFS subClassOf property:

<rdfs:Class ID="Male">

<rdfs:subClassOf rdf:resource="#Animal"/>

</rdfs:Class>

9DAML-ONT Initial Release, http://www.daml.org/2000/10/daml-ont.html
10DAML+OIL http://www.daml.org/2000/12/daml+oil-index.html

http://www.daml.org/2000/10/daml-ont.html
http://www.daml.org/2000/12/daml+oil-index.html


20

This part of OIL ontologies is therefore accessible to any RDFS agent. In contrast, DAML-ONT
uses its own locally defined “subClassOf” property, for example:

<daml:Class ID="Male">

<daml:subClassOf resource="#Animal"/>

</daml:Class>

The DAML-ONT subClassOf property is then defined to be “equivalentTo” rdfs:subClassOf, but
the definition of “daml:equivalentTo” itself relies cyclicly on the definition of daml:sub-PropertyOf.
Therefore even simple subclass relationships in a DAML ontology are inaccessible to an RDFS agent.
The situation is even worse when it comes to more complex class definitions. For example, the
definition of the class “TallMan” is the intersection of the classes “Man” and “TallThing” is expressed
in DAML-ONT as:

<daml:Class ID="TallMan">

<daml:intersectionOf parseType="daml:collection">

<daml:Class about="#TallThing"/>

<daml:Class about="#Man"/>

</daml:intersectionOf>

</daml:Class>

This is completely opaque to an RDFS agent as it will not understand the semantics of “daml:intersectionOf”
In OIL, the definition of TallMan would rely on the fact that intersection is implicit in the semantics
of rdfs:subClassOf:

<rdfs:Class ID="TallMan">

<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/rdfs-schema/#DefinedClass"/>

<rdfs:subClassOf rdf:resource="#TallThing"/>

<rdfs:subClassOf rdf:resource="#Man"/>

</rdfs:Class>

making the sub-class relationships accessible to any RDF Schema agent. In conclusion, we argue that:

• OIL and DAML-ONT are currently the only two web-based ontology languages that are built
on top of RDF;

• of these, OIL achieves a much larger degree of “backward compatability” with RDF.

As mentioned earlier, DAML+OIL is a proposal for an ontology language that merges the ideas
incorporated in DAML-ONT with those in OIL. Specifically, many of the ideas, presented in this
article, on how to represent a KR language in RDFS have been adopted by DAML+OIL. In effect,
DAML+OIL is “backward compatible” with RDF to a much larger degree than the initial DAML-ONT
language is.

8 Conclusion

In this article, we have shown why a machine-accessible representation of the information available on
the Web is both useful and necessary. We have also shown that RDFS is only a small step towards
the required expressiveness for the Semantic Web.

Finally, we have shown how RDFS still can be used to this end, by extending it with additional
modeling primitives as defined by a more formal knowledge representation scheme, such as OIL.

An important advantage of our approach is the maximization of the backward compatibility with
RDFS. We firmly believe that our way of extending is generally applicable across knowledge represen-
tation formalisms.



21

Acknowledgements

We would like to thank Sean Bechhofer, Monica Crubezy, Michael Erdmann, and Arjohn Kampman
for their helpful comments and for reviewing early drafts of this paper.

References

[Bechhofer et al., 1999] Bechhofer, S., Horrocks, I., Patel-Schneider, P. F., and Tessaris, S. (1999). A
proposal for a description logic interface. In Proc. of DL’99, pages 33–36.

[Berners-Lee, 1998] Berners-Lee, T. (1998). Semantic web road map. Internal note, World Wide Web
Consortium. See http://www.w3.org/DesignIssues/Semantic.html.

[Brickley and Guha, 2000] Brickley, D. and Guha, R. (2000). Resource Description Framework
(RDF) Schema Specification 1.0. Candidate recommendation, World Wide Web Consortium. See
http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

[Fensel, 2000] Fensel, D. (2000). Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, Berlin.

[Fensel et al., 1998] Fensel, D., Decker, S., Erdmann, M., and Studer, R. (1998). Ontobroker: The
very high idea. In Proceedings of the 11th International Flairs Conference (FLAIRS-98), Sanibal
Island, Florida.

[Fensel et al., 2000a] Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., and Klein,
M. (2000a). OIL in a nutshell. In Dieng, R. and Corby, O., editors, Knowledge Engineering
and Knowledge Management; Methods, Models and Tools, Proceedings of the 12th International
Conference EKAW 2000, number LNCS 1937 in Lecture Notes in Artificial Intelligence, pages 1–16,
Juan-les-Pins, France. Springer-Verlag.

[Fensel et al., 2000b] Fensel, D., van Harmelen, F., Klein, M., Akkermans, H., Broekstra, J., Fluit,
C., van der Meer, J., Schnurr, H.-P., Studer, R., Hughes, J., Krohn, U., Davies, J., Engels, R.,
Bremdal, B., Ygge, F., Lau, T., Novotny, B., Reimer, U., and Horrocks, I. (2000b). On-to-knowledge:
Ontology-based tools for knowledge management. In Proceedings of the eBusiness and eWork 2000
(EMMSEC 2000) Conference, Madrid, Spain.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2).

[Heflin and Hendler, 2000] Heflin, J. and Hendler, J. (2000). Dynamic ontologies on the web. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages
443–449. AAAI/MIT Press, Menlo Park, CA.

[Horrocks et al., 2000] Horrocks, I., Fensel, D., Broekstra, J., Decker, S., Erdmann, M., Goble, C.,
van Harmelen, F., Klein, M., Staab, S., Studer, R., and Motta, E. (2000). OIL: The Ontology
Inference Layer. Technical Report IR-479, Vrije Universiteit Amsterdam, Faculty of Sciences. See
http://www.ontoknowledge.org/oil/.

[Klein et al., 2000] Klein, M., Fensel, D., van Harmelen, F., and Horrocks, I. (2000). The relation
between ontologies and schema-languages: Translating OIL-specifications in XML-schema. In Ben-
jamins, V. R., Gomez-Perez, A., and Guarino, N., editors, Proceedings of the Workshop on Appli-
cations of Ontologies and Problem-solving Methods, 14th European Conference on Artificial Intelli-
gence (ECAI 2000), Berlin, Germany.

[Lassila and Swick, 1999] Lassila, O. and Swick, R. R. (1999). Resource Description Framework
(RDF): Model and Syntax Specification. Recommendation, World Wide Web Consortium. See
http://www.w3.org/TR/REC-rdf-syntax/.



22

[Luke et al., 1996] Luke, S., Spector, L., and Rager, D. (1996). Ontology-based knowledge discovery
on the world-wide web. In Franz, A. and Kitano, H., editors, Working Notes of the Workshop
on Internet-Based Information Systems at the 13th National Conference on Artificial Intelligence
(AAAI96), pages 96–102. AAAI Press.

[Nejdl et al., 2000] Nejdl, W., Wolpers, M., and Capella, C. (2000). The RDF Schema Revisited. In
Modelle und Modellierungssprachen in Informatik und Wirtschaftsinformatik, Modellierung 2000,
St. Goar. Foelbach Verlag, Koblenz.

[Staab et al., 2000] Staab, S., Erdmann, M., Mädche, A., and Decker, S. (2000). An extensible ap-
proach for modeling ontologies in RDF(S). In First Workshop on the Semantic Web at the Fourth
European Conference on Digital Libraries, Lisbon, Portugal.

[Staab and Mädche, 2000] Staab, S. and Mädche, A. (2000). Axioms are objects, too - ontology
engineering beyond the modeling of concepts and relations. In Benjamins, V., Gomez-Perez, A.,
and Guarino, N., editors, Proceedings of the Workshop on Applications of Ontologies and Problem-
solving Methods, 14th European Conference on Artificial Intelligence ECAI 2000, Berlin, Germany.

[Stuckenschmidt, 2000] Stuckenschmidt, H. (2000). Using OIL for Intelligent Information Integration.
In Benjamins, V., Gomez-Perez, A., and Guarino, N., editors, Proceedings of the Workshop on
Applications of Ontologies and Problem-solving Methods, 14th European Conference on Artificial
Intelligence ECAI 2000, Berlin, Germany.


	1 Introduction
	2 RDF and RDF Schema
	2.1 Introduction to RDF
	2.2 Introduction to RDF Schema
	2.2.1 The data model of RDF Schema
	2.2.2 The modeling primitives of RDF Schema


	3 OIL
	4 OIL as an extension of RDF Schema
	4.1 The ontology container and import mechanism
	4.2 Class and attribute definitions
	4.2.1 Defined classes and Primitive classes
	4.2.2 Class Subsumption
	4.2.3 Slot Constraints
	4.2.4 Class Expressions
	4.2.5 Lists of statements
	4.2.6 Slot constraints to concrete types
	4.2.7 Conclusion

	4.3 Slot definitions
	4.4 Axioms
	4.5 Restrictions to valid expressions

	5 Backward compatability with RDF Schema
	6 Uncovered problems with RDF Schema
	7 Related work
	8 Conclusion

