Answer Set Optimization

G. Brewka, I. Niemelä, M. Truszczyński

brewka@informatik.uni-leipzig.de

Universität Leipzig

Outline

- 1. Answer sets and answer set programming
- 2. Describing the quality of solutions
- 3. Optimization programs
- 4. Example: solution coherence in meeting scheduling
- 5. Conclusions

Why are AS interesting?

- provide meaning to logic programs with default negation *not*
- support problem solving paradigm where models (not theorems) represent solutions
- many interesting applications in planning, reasoning about action, configuration, diagnosis, space shuttle control, ...
- several useful extensions: disjunctive LPs, cardinality constraints, weight constraints ...
- interesting implementations: dlv, Smodels

Extended logic programs

Syntax of rules:

 $A \leftarrow B_1, \ldots, B_n, \text{not } C_1, \ldots, \text{not } C_m$ where A, the B_i and the C_j are ground literals.

2 types of negation:

- classical negation \neg
- default negation not

Answer sets

S answer set of program P iff S is

- closed under P: $A \in S$ whenever $A \leftarrow B_1, \ldots, B_n, \text{not } C_1, \ldots, \text{not } C_m \in P,$ $B_1, \ldots, B_n \in S \text{ and } C_1, \ldots, C_m \notin S,$
- logically closed:
 S consistent or equal to set of all literals.
- grounded in *P*:
 - $A \in S$ implies there is a derivation for A from P based on rules whose not-Literals are not in S.

Good and bad solutions

- many problems have solutions of different quality
- basic ASP paradigm provides no distinction
- how to compare answer sets?
- quantitative measures, e.g. weights and maximize statements in *Smodels*, weak constraints in *dlv*
- here: qualitative measures based on preferences

Preference relations on AS

- different ways of adding preferences to LPs
- preferences between rules vs preferences between literals/formulas
- fixed vs. context dependent (the latter requires preference expressions within programs)
- here: context dependent preferences between literals/formulas

LPs with ordered disjunction

finite set of rules of the form:

 $C_1 \times \ldots \times C_n \leftarrow A_1, \ldots, A_m, \operatorname{not} B_1, \ldots, \operatorname{not} B_k$

 C_i, A_j, B_l ground literals. if body then some C_j must be true, preferably C_1 , if impossible then C_2 , if impossible C_3 , etc.

- Answer sets satisfy rules to different degrees.
- Use degrees to define global preference relation on answer sets.
- Different options how to do this (inclusion based, cardinality based etc.).

Optimization programs

- LPODs amalgamate generation of answer sets with quality assessment
- different types of programs available (disjunctive, cardinality constraints etc.)
- want more general preferences, possibly among unavailable options
- how to obtain more modularity and generality?
- use program P_{gen} to generate answer sets, preference program P_{pref} to compare them
- all we require is that P_{gen} generates sets of literals

Preference programs

Finite set of rules of the form

 $C_1 > \ldots > C_k \leftarrow a_1, \ldots, a_n, \operatorname{not} b_1, \ldots, \operatorname{not} b_m$

 a_i, b_j literals, C_i boolean combination: built using \lor, \land, \neg , not. \neg in front of atoms, not in front of literals only.

additional expressiveness: combinations of properties preferred over others: $a > (b \land c) > d \leftarrow f$ equally preferred options: $a > (b \lor c) > \operatorname{not} d \leftarrow g$

Preference rule satisfaction

Consider $r = C_1 > \ldots > C_k \leftarrow body$.

For the degree of satisfaction $v_S(r)$ of r given set S of literals, there are three cases:

- 1. body not satisfied in *S*: *r* inapplicable thus *irrelevant*: $v_S(r) = I$
- 2. body satisfied and no C_i satisfied in S: rule specifies irrelevant preferences: $v_S(r) = I$
- 3. body satisfied and at least one C_i satisfied in S: $v_S(r) = \min\{i: S \models C_i\}.$

Satisfaction preorder

Views on irrelevance:

- *I* incomparable to other values, or
- *I* better than 2, 3, ... because no preference is violated

adopt latter view here:

Preference satisfaction ordering

 $\overline{P_{pref}} = \{r_1, \dots, r_n\}, \text{AS } S \text{ induces satisfaction}$ vector $V_S = (v_S(r_1), \dots, v_S(r_n)).$

Extend po on satisfaction degrees to po on satisfaction vectors and answer sets:

 S_1, S_2 answer sets.

 $V_{S_1} \ge V_{S_2}$ if $v_{S_1}(r_i) \ge v_{S_2}(r_i)$, for all $i \in \{1, \ldots, n\}$. $V_{S_1} > V_{S_2}$ if $V_{S_1} \ge V_{S_2}$ and not $V_{S_2} \ge V_{S_1}$.

 $S_1 \ge S_2 \ (S_1 > S_2) \ \text{iff} \ V_{S_1} \ge V_{S_2} \ (V_{S_1} > V_{S_2})$

Meta preferences

- Preference rules themselves may be of different importance
- Put rules in subsets R_1, R_2, \dots of decreasing importance
- Select answer sets most preferred according to R_1 , among those answer sets most preferred according to R_2 etc.
- Allows for distinction among different criteria

Example: solution coherence

- assume solution S for problem P was computed
- problem changes slightly to P'
- not interested in arbitrary solution of P', but solution as close as possible to S.
- distance measure based on symmetric difference: ($A \Delta B = A \setminus B \cup B \setminus A$)

 $S_1 \leq_S S_2 iff S_1 \Delta S \subseteq S_2 \Delta S$

corresponding preference program:

 $\{a > \operatorname{not} a : a \in S\} \cup \{\operatorname{not} a > a : a \notin S\}.$

Meeting scheduling

 $part(p_1, m_1) = part(p_3, m_2) \\ part(p_2, m_1) = part(p_3, m_3) \\ part(p_2, m_2) = part(p_4, m_3)$

 $unav(p_1,s_4)\ unav(p_2,s_4)\ unav(p_4,s_2)$

Meetings need 1 slot (using cardinality constraints):

 $1{slot(M,S): slot(S)}1 \leftarrow meeting(M)$

Constraints:

 $\leftarrow part(P, M), slot(M, S), unav(P, S) \\ \leftarrow part(P, M), part(P, M'), M \neq M', \\ slot(M, S), slot(M', S)$

Meeting scheduling, ctd.

A solution: $slot(m_1, s_1), slot(m_2, s_2), slot(m_3, s_3)$

 p_4 becomes unavailable at s_3 : $unav(p_4, s_3)$

Preference rules: $slot(m_1, s_1) > not slot(m_1, s_1),$ $slot(m_2, s_2) > not slot(m_2, s_2), \dots$

Former solution invalid. Some new solutions:

 $S_1: slot(m_1, s_1), slot(m_2, s_2), slot(m_3, s_4)$ $S_2: slot(m_1, s_2), slot(m_2, s_1), slot(m_3, s_4)$ $S_3: slot(m_1, s_3), slot(m_2, s_2), slot(m_3, s_1)$

inclusion based strategy: S_1 better than S_2 . cardinality based strategy: S_1 better than S_2 and S_3 .

More stuff in the paper

- complexity: one extra layer of complexity, e.g.
 ∃ optimal AS S with l ∈ S? Σ₂^P-complete (extended LPs, possibly with cardinality or weight constraints)
- *implementation:* iterated improvement of current solution generated by tester program
- relationship to CP-networks: different interpretation of preferences: ceteris paribus vs. multi-criteria, theorems show CP-ordering can be approximated

Conclusion

- answer set programming: interesting declarative problem solving paradigm
- inclusion of optimization facilities increases applicability
- context dependent preferences among formulas flexible and powerful
- possible applications: configuration with weak constraints, diagnosis, planning, inconsistency handling ...
- future work: general optimization language for specifying qualitative preferences and optimization strategies