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Chapter 1

Nonmonotonic Reasoning

Gerhard Brewka, Ilkka Niemel ä,
Mirosław Truszczyński

1.1 Introduction

Classical logic ismonotonicin the following sense: whenever a sentenceA is a logical
consequence of a set of sentencesT , thenA is also a consequence of an arbitrary superset
of T . In other words, adding information never invalidates any conclusions.

Commonsense reasoning is different. We often draw plausible conclusions based on
the assumption that the world in which we function and about which we reason isnormal
andas expected. This is far from being irrational. To the contrary, it is thebest we can
do in situations in which we have only incomplete information. However, as unexpected
as it may be, it can happen that our normality assumptions turn out to be wrong. New
information can show that the situation actually is abnormal in some respect. In this case
we may have to revise our conclusions.

For example, let us assume that Professor Jones likes to havea good espresso after
lunch in a campus café. You need to talk to her about a grant proposal. It is about 1:00pm
and, under normal circumstances, Professor Jones sticks toher daily routine. Thus, you
draw a plausible conclusion that she is presently enjoying her favorite drink. You decide
to go to the caf́e and meet her there. As you get near the student center, wherethe cafe
is located, you see people streaming out of the building. Oneof them tells you about
the fire alarm that just went off. The new piece of informationinvalidates the normality
assumption and so the conclusion about the present locationof Professor Jones, too.

Such reasoning, where additional information may invalidate conclusions, is called
nonmonotonic. It has been a focus of extensive studies by the knowledge representation
community since the early eighties of the last century. Thisinterest was fueled by several
fundamental challenges facing knowledge representation such as modeling and reasoning
about rules with exceptions ordefaults, and solving theframeproblem.
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Rules with exceptions

Most rules we use in commonsense reasoning — likeuniversity professors teach, birds fly,
kids like ice-cream, Japanese cars are reliable— have exceptions. The rules describe what
is normally the case, but they do not necessarily hold without exception. This is obviously
in contrast with universally quantified formulas in first order logic. The sentence

∀x (prof (x) ⊃ teaches(x))

simply excludes the possibility of non-teaching university professors and thus cannot be
used to represent rules with exceptions. Of course, we can refine the sentence to

∀x ((prof (x) ∧ ¬abnormal(x)) ⊃ teaches(x)).

However, to apply this rule, say to Professor Jones, we need to know whether Professor
Jones is exceptional (for instance, professors who are department Chairs do not teach).
Even if we assume that the unary predicateabnormal(.) can be defined precisely, which
is rarely the case in practice as the list of possible exceptions is hard — if not impossible
— to complete, we will most often lack information to derive that Professor Jones is not
exceptional. We want to apply the rule even if all we know about Dr. Jones is that she is a
professor at a university. If we later learn she is a department Chair — well, then we have
to retract our former conclusion about her teaching classes. Such scenarios can only be
handled with a nonmonotonic reasoning formalism.

The frame problem

To express effects of actions and reason about changes in theworld they incur, one has
to indicate under what circumstances a proposition whose truth value may vary, afluent,
holds. One of the most elegant formalisms to represent change in logic,situation calculus
[89, 88, 112], uses situations corresponding to sequences of actions to achieve this. For
instance, the fact that Fred is in the kitchen after walking there, starting in initial situation
S0, is represented as

holds(in(Fred, Kitchen), do(walk(Fred, Kitchen), S0)).

The predicateholds allows us to state that a fluent, herein(Fred, Kitchen), holds in a
particular situation. The expressionwalk(Fred, Kitchen) is an action, and the expression
do(walk(Fred, Kitchen), S0) is the situation after Fred walked to the kitchen, while in
situationS0.

In situation calculus, effects of actions can easily be described. It is more problematic,
however, to describe what doesnot change when an event occurs. For instance, the color
of the kitchen, the position of chairs, and many other thingsremain unaffected by Fred
walking to the kitchen. The frame problem asks how to represent the large amount of
non-changes when reasoning about action.

One possibility is to use a persistence rule such as:what holds in a situation typically
holds in the situation after an action was performed, unlessit contradicts the description
of the effects of the action. This rule is obviously nonmonotonic. Just adding such a persis-
tence rule to an action theory is not nearly enough to solve problems arising in reasoning
about action (see Chapters 16 – 19 in this volume). However, it is an important compo-
nent of a solution, and so the frame problem has provided a major impetus to research of
nonmonotonic reasoning.
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About this chapter

Handling rules with exceptions and representing the frame problem are by no means the
only applications that have been driving research in nonmonotonic reasoning. Belief revi-
sion, abstract nonmonotonic inference relations, reasoning with conditionals, semantics of
logic programs with negation, and applications of nonmonotonic formalisms as database
query languages and specification languages for search problems all provided motivation
and new directions for research in nonmonotonic reasoning.

One of the first papers explicitly dealing with the issue of nonmonotonic reasoning was
a paper by Erik Sandewall [115] written in 1972 at a time when it was sometimes argued
that logic is irrelevant for AI since it is not capable of representing nonmonotonicity in
the consequence relation. Sandewall argued that it is indeed possible, with a moderate
modification of conventional (first-order) logic, to accommodate this requirement. The
basic idea in the 1972 paper is to allow rules of the form

A andUnless B ⇒ C

where, informally,C can be inferred ifA was inferred andB cannot be inferred. The 1972
paper discusses consequences of the proposed approach, andin particular it identifies that
it leads to the possibility of multiple extensions. At aboutthe same time Hewitt published
his work on Planner [55], where he proposed using thethnot operator for referring to
failed inference.

In this chapter we give a short introduction to the field. Given its present scope, we do
not aim at a comprehensive survey. Instead, we will describethree of the major formalisms
in more detail: default logic in Section 1.2, autoepistemiclogic in Section 1.3, and circum-
scription in Section 1.4. We will then discuss connections between these formalisms. It is
encouraging and esthetically satisfying that despite different origins and motivations, one
can find common themes.

We chose default logic, autoepistemic logic, and circumscription for the more detailed
presentation since they are prominent and typical representatives of two orthogonal ap-
proaches: fixed point logics and model preference logics. The former are based on afixed
point operatorthat is used to generate — possibly multiple — sets of acceptable beliefs
(called extensions or expansions), taking into account certain consistency conditions. Non-
monotonicity in these approaches is achieved since what is consistent changes when new
information is added. Model preference logics, on the otherhand, are concerned with
nonmonotonic inference relations rather than formation ofbelief sets. They select some
preferredor normal models out of the set of all models and define nonmonotonic infer-
ence with respect to these preferred (normal) models only. Here nonmonotonicity arises
since adding new information changes the set of preferred models: models that were not
preferred before may become preferred once we learn new facts.

Preference logics and their generalizations are importantnot only as a broad frame-
work for circumscription. They are also fundamental for studies of abstract nonmonotonic
inference relations. In Section 1.5, we discuss this line ofresearch in more detail and cover
such related topics as reasoning about conditionals, rational closure, and system Z.

In the last section of the chapter, we discuss the relationship between the major ap-
proaches, and present an overview of some other research directions in nonmonotonic
reasoning. By necessity we will be brief. For a more extensive treatment of nonmonotonic



4 1.

reasoning we refer the reader to the books (in order of appearance) [43, 11, 78, 85, 25, 2,
16, 17, 80].

1.2 Default Logic

Default reasoning is common. It appears when we apply the Closed-World Assumption
to derive negative information, when we use inference rulesthat admit exceptions (rules
that hold under thenormalityassumption), and when we use frame axioms to reason about
effects of actions. Ray Reiter, who provided one of the most robust formalizations of
default reasoning, argued that understanding default reasoning is of foremost importance
for knowledge representation and reasoning. According to Reiter defaults are meta-rules
of the form “in the absence of any information to the contrary, assume ...” and default
reasoning consists of applying them [111].

Usual inference rules sanction the derivation of a formula whenever some other formu-
las are derived. In contrast, Reiter’s defaults require an additional consistency condition to
hold. For instance, a default rulenormally, a university professor teachesis represented in
Reiter’s default notation as

prof (x) : teaches(x)

teaches(x)
.

It states that ifprof (J) is given or derived for a particular ground termJ (which may
represent Prof. Jones, for instance) andteaches(J) is consistent (there is no information
that¬teaches(J) holds), thenteaches(J) can be derived “by default”. The key ques-
tion of course is: consistent with what? Intuitively,teaches(J) has to be consistent with
the whole set of formulas which one can “reasonably” accept based on the available in-
formation. Reiter’s far-reaching contribution is that he made this intuition formal. In his
approach, depending on the choice of applied defaults, different sets of formulas may be
taken as providing context for deciding consistency. Reiter calls these different setsexten-
sions.

One can use extensions to define askepticalinference relation (a formula is skeptically
entailed by a default theory if it belongs toall of its extensions), or acredulousinference
relation (a formula is credulously entailed by a default theory if it belongs toat least oneof
its extensions). In many applications such as diagnosis, planning and, more generally in all
the situations where defaults model constraints, the extensions themselves are of interest
as they represent different solutions to a problem (see Chapter 7 on Answer Sets in this
volume).

1.2.1 Basic Definitions and Properties

In default logic, what we are certain about is represented bymeans of sentences of first-
order logic (formulas without free variables). Defeasibleinference rules which specify
patterns of reasoning that normally hold are represented asdefaults. Formally, a defaultd
is an expression

A : B1, . . . , Bn

C
(1.1)

whereA, Bi, andC are formulas in first-order logic. In this notation,A is theprerequisite,
B1, . . . , Bn areconsistency conditionsor justifications, andC is theconsequent. We de-
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noteA, {B1, . . . , Bn} andC by pre(d), just(d), andcons(d), respectively. To save space,
we will also write a default (1.1) asA:B1, . . . , Bn/C.

Definition 1 A default theoryis a pair(D, W ), whereW is a set of sentences in first-order
logic andD is a set of defaults.

A default isclosedif its prerequisite, justifications, and consequent are sentences. Oth-
erwise, it isopen. A default theory isclosedif all its defaults are closed; otherwise, it is
open. A default theory determines its Herbrand universe. We willinterpret open defaults
as schemata representing all of their ground instances. Therefore, open default theories
are just a shorthand notation for their closed counterpartsand so, in this chapter, the term
default theoryalways stands for acloseddefault theory1.

Before we define extensions of a default theory(D, W ) formally, let us discuss prop-
erties we expect an extensionE of (D, W ) to satisfy.

1. SinceW represents certain knowledge, we wantW to be contained inE, that is, we
require thatW ⊆ E.

2. We wantE to be deductively closed in the sense of classical logic, that is, we want
Cn(E) = E to hold, where|= is the classical logical consequence relation and
Cn(E) = {A | E |= A} denotes the set of logical consequences of a set of formulas
E.

3. We use defaults to expand our knowledge. Thus,E should beclosedunder defaults
in D: whenever the prerequisite of a defaultd ∈ D is in E and all its justifications
are consistent withE, the consequent of the default must be inE.

These three requirements do not yet specify the right concept of an extension. We
still need some condition ofgroundednessof extensions: each formula in an extension
needs sufficient reason to be included in the extension. Minimality with respect to the
requirements (1)–(3) does not do the job. LetW = ∅ andD = {> : a/b}. ThenCn({¬a})
is a minimal set satisfying the three properties, but the theory (D, W ) gives no support for
¬a. IndeedW = ∅ and the only default in the theory cannot be used to derive anything
else butb.

The problem is how to capture the inference-rule interpretation we ascribe to defaults.
It is not a simple matter to adjust this as defaults have premises of two different types and
this has to be taken into account. Reiter’s proposal rests onan observation that given a
setS of formulas to use when testing consistency of justifications, there is auniqueleast
theory, sayΓ(S), containingW , closed under classical provability and also (in a certain
sense determined byS) under defaults. Reiter argued that for a theoryS to be grounded
in (D, W ), S must be precisely what(D, W ) implies, given thatS is used for testing the
consistency of justifications, and used this property to define extensions [111].

Definition 2 (Default logic extension)
Let (D, W ) be a default theory. The operatorΓ assigns to every setS of formulas the
smallest setU of formulas such that:

1We note, however, that Reiter treats open defaults differently and uses a more complicated method to define
extensions for them. A theory of open default theories was developed by [73]. Some problems with the existing
treatments of open defaults are discussed in [5].
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1. W ⊆ U ,

2. Cn(U) = U ,

3. if A:B1, . . . , Bn/C ∈ D, U |= A, S 6|= ¬Bi, 1 ≤ i ≤ n, thenC ∈ U .

A setE of formulas is anextensionof (D, W ) if and only ifE = Γ(E), that is,E is a fixed
point ofΓ.

One can show that such a least setU exists so the operatorΓ is well defined. It is
also not difficult to see that extensions defined as fixed points ofΓ satisfy the requirements
(1)–(3).

In addition, the way the operatorΓ is defined also guarantees that extensions are
grounded in(D, W ). Indeed,Γ(S) can be characterized as the set of all formulas that can
be derived fromW by means of classical derivability and by using those defaults whose
justifications are each consistent withS as additionalstandardinference rules (once every
justification in a defaultd turns out to be consistent withS, the defaultd starts to func-
tion as the inference rulepre(d)/cons(d), other defaults are ignored). This observation is
behind a quasi-inductive characterization of extensions,also due to Reiter [111].

Theorem 1 Let (D, W ) be a default theory andS a set of formulas. Let

E0 = W, and fori ≥ 0

Ei+1 = Cn(Ei) ∪ {C | A:B1, . . . , Bn/C ∈ D, Ei |= A, S 6|= ¬Bj , 1 ≤ j ≤ n}.

ThenΓ(S) =
⋃∞

i=0 Ei. Moreover, a setE of formulas is an extension of(D, W ) if and
only if E =

⋃∞
i=0 Ei.

The appearance ofE in the definition ofEi+1 is what renders this alternative definition
of extensions non-constructive. It is, however, quite useful. Reiter [111] used Theorem 1
to show that every extension of a default theory(D, W ) can be represented as the logical
closure ofW and the consequents of a subset of defaults fromD.

Let E be a set of formulas. A defaultd is generatingfor E if E |= pre(d) and, for
everyB ∈ just(d), E 6|= ¬B. If D is a set of defaults, we writeGD(D, E) for the set of
defaults inD that are generating forE.

Theorem 2 (Generating Defaults)Let E be an extension of a default theory(D, W ).
ThenE = Cn(W ∪ {cons(d) | d ∈ GD(D, E)}).

This result is fundamental for algorithms to compute extensions. We will come back
to this issue later. For now, we will restrict ourselves to a few examples. Let

D1 = {prof (x):teaches(x)/teaches(x)}
W1 = {prof (J)}.

We recall that we interpret an open default as the set of its ground instantiations. Since
there is only one constant (J) in the theory, the correspondingcloseddefault theory is

D′
1 = {prof (J):teaches(J)/teaches(J)}

W1 = {prof (J)}.
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By Theorem 2 an extension is the deductive closure ofW and some of the available default
consequents. Hence, there are only two candidates for an extension here, namelyS1 =
Cn({prof (J)}) andS2 = Cn({prof (J), teaches(J)}). We can now use Theorem 1 to
computeΓ(S1). Clearly, E0 = Cn(W1). Sinceteaches(J) is consistent withS1 and
E0 |= prof (J), E1 = Cn({prof (J), teaches(J)}). Moreover, for everyi > 2, Ei = E1.
Thus,Γ(S1) = Cn({prof (J), teaches(J)}). Sinceteaches(J) /∈ S1, S1 6= Γ(S1) and
so,S1 is not an extension of(D1, W1) (nor of (D′

1, W1)). On the other hand, the same
argument shows thatΓ(S2) = Cn({prof (J), teaches(J)}). Thus,S2 = Γ(S2), that is,S2

is an extension of(D1, W1) (and also(D′
1, W1)).

Now let us consider a situation when ProfessorJ is not a typical professor.

D2 = D1

W2 = {prof (J), chair(J), ∀x.(chair(x) ⊃ ¬teaches(x))}.

As before, there are two candidates for extensions, namelyS1 = Cn(W2) and S2 =
Cn(W2∪{teaches(J)}). This timeS2 is inconsistent and one can compute, using Theorem
1, thatΓ(S2) = Cn(W2). Thus,S2 is not a fixed point ofΓ and so not an extension. On
the other hand,Γ(S1) = Cn(W2) and soS1 is an extension of(D2, W2). Consequently,
this default theory supports the inference that ProfessorJ does not teach (as it should).

Finally, we will consider what happens if the universally quantified formula fromW2

is replaced by a corresponding default rule:

D3 = {prof (x):teaches(x)/teaches(x), chair(x):¬teaches(x)/¬teaches(x)}
W3 = {prof (J), chair(J)}.

The corresponding closed default theory has two defaults:prof (J):teaches(J)/teaches(J)
andchair(J):¬teaches(J)/¬teaches(J). Thus, there are now four candidates for exten-
sions:

Cn({prof (J), chair(J)})
Cn({prof (J), chair(J), teaches(J)})
Cn({prof (J), chair(J),¬teaches(J)})
Cn({prof (J), chair(J), teaches(J),¬teaches(J)}).

In each case, one can compute the value of the operatorΓ and check the condition for an
extension. In this example, the second and third theories happen to be extensions. Since
the theory offers no information whether Professor J is a typical professor or a typical chair
(she cannot be both as this would lead to a contradiction), weget two extensions. In one
of them Professor J is a typical professor and so teaches, in the other one she is a typical
chair and so, does not teach.

Default theories can have an arbitrary number of extensions, including having no ex-
tensions at all. We have seen examples of default theories with one and two extensions
above. A simple default theory without an extension is

({>:¬a/a}, ∅).

If a deductively closed set of formulasS does not containa, thenS is not an extension
since the default has not been applied even though¬a is consistent withS. In other words,
Γ(S) will contain a and thusΓ(S) 6= S. On the other hand, ifS containsa, thenΓ(S)
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produces a set not containinga (more precisely: the set of all tautologies) since the default
is inapplicable with respect toS. AgainS is not an extension.

Theorem 2 has some immediate consequences.

Corollary 3 Let (D, W ) be a default theory.

1. If W is inconsistent, then(D, W ) has a single extension, which consists of all for-
mulas in the language.

2. If W is consistent and every default inD has at least one justification, then every
extension of(D, W ) is consistent.

We noted that the minimality with respect to the requirements (1)–(3) we discussed
prior to the formal definition of extensions does not guarantee groundedness. It turns
out that the type of groundedness satisfied by extensions ensures their minimality and,
consequently, implies that they form an antichain [111].

Theorem 4 Let (D, W ) be a default theory. IfE is an extension of(D, W ) andE′ is a
theory closed under classical consequence relation and defaults inD such thatE′ ⊆ E,
thenE′ = E. In particular, if E and E′ are extensions of(D, W ) and E ⊆ E′, then
E = E′.

1.2.2 Computational Properties

The key reasoning problems for default logic are decidingsceptical and credulous infer-
enceand finding extensions. For first-order default logic these problems are not even semi-
decidable [111]. This is different from classical first order logic which is semi-decidable.
Hence, automated reasoning systems for first-order defaultlogic cannot provide a similar
level of completeness as classical theorem provers: a formula can be a (nonmonotonic)
consequence of a default theory but no algorithm is able to establish this. This can be com-
pared to first-order theorem proving where it can be guaranteed that for each valid formula
a proof is eventually found.

Even in the propositional case extensions of a default theory are infinite sets of formu-
las. In order to handle them computationally we need characterizations in terms of for-
mulas that appear in(D, W ). We will now present two such characterizations which play
an important role in clarifying computational properties of default logic and in developing
algorithms for default reasoning.

We will write Mon(D) for the set of standard inference rules obtained by dropping
justifications from defaults inD:

Mon(D) =

{

pre(d)

cons(d)
| d ∈ D

}

.

We defineCnMon(D)(.) to be the consequence operator induced by the classical conse-
quence relation and the rules inMon(D). That is, ifW is a set of sentences,CnMon(D)(W )
is the closure ofW with respect to classical logical consequence and the rulesMon(D)
(the least set of formulas containingW and closed under the classical consequence relation
and the rules inMon(D)).
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The first characterization is based on the observation that extensions can be described
in terms of their generating defaults (Theorem 2). The details can be found in [85, 114, 5].
We will only state the main result. The idea is to project the requirements we impose on
an extension to a set of its generating defaults. Thus, a set of generating defaults should
be grounded inW , which means that for every default in this set the prerequisite should
be derivable (in a certain specific sense) fromW . Second, the set of generating defaults
should containall defaults that apply.

Theorem 5 (Extensions in Terms of Generating Defaults)A setE of formulas is an ex-
tension of a default theory(D, W ) if and only if there is a setD′ ⊆ D such thatE =
Cn(W ∪ {cons(d) | d ∈ D′}) and

1. for everyd ∈ D′, pre(d) ∈ CnMon(D′)(W ),

2. for all d ∈ D: d ∈ D′ if and only if pre(d) ∈ Cn(W ∪ {cons(d) | d ∈ D′}) and
for all B ∈ just(d), ¬B 6∈ Cn(W ∪ {cons(d) | d ∈ D′}).

The second characterization was introduced in [98] and is focused on justifications.
The idea is that default rules are inference rules guarded with consistency conditions given
by the justifications. Hence, it is the set of justifications that determines the extension and
the rest is just a monotonic derivation.

We denote byjust(D) the set of all justifications in the set of defaultsD. For a setS
of formulas we define

Mon(D,S ) = {pre(d)/cons(d) | d ∈ D, just(d) ⊆ S}

as the set of monotonic inference rules enabled byS . A set of justifications is calledfull
with respect to the default theory if it consists of the justifications which are consistent
with the consequences of the monotonic inference rules enabled by the set.

Definition 3 (Full Sets) For a default theory(D, W ), a set of justificationsS ⊆ just(D)
is (D, W )-full if the following condition holds: for everyB ∈ just(D), B ∈ S if and only
if ¬B 6∈ CnMon(D,S)(W ).

For each full set there is a corresponding extension and for each extension a full set that
induces it.

Theorem 6 (Extensions in Terms of Full Sets)Let (D, W ) a default theory.

1. If S ⊆ just(D) is (D, W )-full, thenCnMon(D,S)(W ) is an extension of(D, W ).

2. If E is an extension of(D, W ), thenS = {B ∈ just(D) | ¬B 6∈ E} is (D, W )-full
andE = CnMon(D,S)(W ).

Example 1 Consider the default theory(D3, W3), where

D3 = {prof (J):teaches(J)/teaches(J), chair(J):¬teaches(J)/¬teaches(J)}

W3 = {prof (J), chair(J)}.
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The possible(D3, W3)-full sets are the four subsets of{teaches(J),¬teaches(J)}. It is
easy to verify that from these only{teaches(J)} and {¬teaches(J)} satisfy the fullness
condition given in Definition 3. For instance, forS = {¬teaches(J)}

Mon(D3,S ) = {
chair(J)

¬teaches(J)
}

andCnMon(D3,S)(W3) = Cn({prof (J), chair(J),¬teaches(J)}). As required we have
¬¬teaches(J) 6∈ CnMon(D3,S)(W3) and¬teaches(J) ∈ CnMon(D3,S)(W3) holds.

The finitary characterization of extensions in Theorems 5 and 6 reveal important com-
putational properties of default logic. A direct consequence is that propositional default
reasoning isdecidableand can be implemented inpolynomial space. This is because the
characterizations are based on classical reasoning which is decidable in polynomial space
in the propositional case.

In order to contrast default logic more sharply to classicallogic we consider a (hypo-
thetical) setting where we have a highly efficient theorem prover for propositional logic
and, hence, are able to decide classical consequences of a set of formulasW and inference
rulesR, that isCnR(W ), efficiently. Theorems 5 and 6 suggest that even in this setting
constructing an extension of a propositional default theory involves a non-trivial search
problem of finding a set of generating defaults or a full set. However, the characterizations
imply an upper bound on the computational complexity of propositional default reasoning
showing that it is on the second level of the polynomial hierarchy2. It turns out this is
a tight upper bound as deciding extension existence and credulous inference are actually
ΣP

2
-complete problems and sceptical inference isΠP

2
-complete [51, 127].

The completeness results imply that (propositional) default reasoning is strictly harder
than classical (propositional) reasoning unless the polynomial hierarchy collapses which
is regarded unlikely. This means that there are two orthogonal sources of complexity in
default reasoning. One source originates from classical logic on top of which default logic
is built. The other source is related to nonmonotonicity of default rules. These sources are
independent of each other because even if we assume that we are able to decide classical
consequence in one computation step, deciding a propositional default reasoning problem
remains on the difficulty level of anNP/co-NP-complete problem and no polynomial
time algorithms are known even under this assumption. Hence, it is highly unlikely that
general default logic can be implemented on top of a classical theorem prover with only a
polynomial overhead.

In order to achieve tractable reasoning it is not enough to limit the syntactic form of
allowed formulas because this affects only one source of complexity but also the way
default rules interact needs to restricted. This is nicely demonstrated by complexity results
on restricted subclasses of default theories [60, 126, 8, 100]. An interesting question is
to find suitable trade-offs between expressive power and computational complexity. For
example, while general default logic has higher computational complexity, it enables very
compact representation of knowledge which is exponentially more succinct than when
using classical logic [50].

A number of decision methods for general (propositional) default reasoning have been
developed. Methods based on the characterization of extensions in terms of generating

2For an introduction to computational complexity theory andfor basic definitions and results on polynomial
hierarchy, see for example [46, 103].
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defaults (Theorem 2) can be found, for example in [85, 5, 114,30], and in terms of full sets
(Theorem 6) in [98]. There are approaches where default reasoning is reduced into another
problem like a truth maintenance problem [59] or a constraint satisfaction problem [8].
An interesting approach to provide proof theory for defaultreasoning based on sequent
calculus was proposed by [18, 19]. More details on automating default reasoning can be
found also in [36].

Notice that for general default reasoning it seems infeasible to develop a fully goal-
directed procedure, that is, a procedure which would examine only those parts of the de-
fault theory which are somehow syntactically relevant to a given query. This is because
extensions are defined with a global condition on the whole theory requiring that each ap-
plicable default rule should be applied. There are theorieswith no extensions and in the
worst case it is necessary to examine every default rule in order to guarantee the existence
of an extension. For achieving a goal-directed decision method, one can consider a weaker
notion of extensions or syntactically restricted subclasses of default theories such as normal
defaults (see below) [117, 118].

1.2.3 Normal Default Theories

By restricting the form of defaults one obtains special classes of default theories. One of
the most important of them is the class ofnormaldefault theories, where all defaults are of
the form

A : B

B
.

The distinguishing feature of normal default theories is that they are guaranteed to
have extensions and extensions are determined by enumerations of the set of defaults.
Let (D, W ) be a normal default theory (as always, assumed to be closed) and let D =
{d1, d2, . . .}.

1. We defineE0 = Cn(W );

2. Let us assumeEi has been defined. We select the first defaultd = A:B/B in the
enumeration such thatEi |= A, Ei 6|= B andEi 6|= ¬B and defineEi+1 = Cn(Ei∪
{B}). If no such default exists, we setEi+1 = Ei.

Theorem 7 Let (D, W ) be a normal default theory. Then, there is an enumerationD =
{d1, d2, . . .} such thatE =

⋃∞
i=1 Ei is an extension of(D, W ) (whereEi are sets con-

structed above). Furthermore, for every extensionE of (D, W ) there is an enumeration,
which yields setsEi such thatE =

⋃∞
i=1 Ei.

Theorem 7 not only establishes the existence of extensions of normal default theories
but it also allows us to derive several properties of extensions. We gather them in the
following theorem.

Theorem 8 Let (D, W ) be a normal default theory. Then,

1. if W ∪ {cons(d)|d ∈ D} is consistent, thenCn(W ∪ {cons(d)|d ∈ D}) is a unique
extension of(D, W );
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2. if E1 andE2 are extensions of(D, W ) andE1 6= E2, thenE1 ∪ E2 is inconsistent;

3. if E is an extension of(D, W ), then for every setD′ of normal defaults, the normal
default theory(D ∪ D′, W ) has an extensionE′ such thatE ⊆ E′.

The last property is often called thesemi-monotonicityof normal default logic. It
asserts that adding normal defaults to a normal default theory does not destroy existing
extensions but only possibly augments them.

A default rule of the form

> : B1, . . . , Bn

C

is calledprerequisite-free. Default theories possessing only prerequisite-free normal de-
faults are calledsupernormal. They are closely related to a formalism for nonmonotonic
reasoning proposed by Poole [107] and so, are sometimes calledPoole defaults. We will
not discuss Poole’s formalism here but only point out that the connection is provided by
the following property of supernormal default theories.

Theorem 9 Let (D, W ) be a supernormal default theory such thatW is consistent. Then,
E is an extension of(D, W ) if and only ifE = Cn(W ∪ {cons(d)|d ∈ C}), whereC is a
maximal subset ofD such thatW ∪ {cons(d)|d ∈ C} is consistent. In particular, ifE is
an extension of(D, W ), then for everyd ∈ D, cons(d) ∈ E or ¬cons(d) ∈ E.

Normal defaults are sufficient for many applications (cf. our discussion of CWA be-
low). However, to represent more complex default reasoninginvolving interactions among
defaults, non-normal defaults are necessary.

1.2.4 Closed-World Assumption and Normal Defaults

TheClosed-World Assumption(or CWA, for short) was introduced by Reiter in [110] in an
effort to formalize ways databases handle negative information. It is a defeasible inference
rule based on the assumption that a setW of sentences designed to represent an applica-
tion domain determinesall ground atomic facts that hold in it (closed-world assumption).
Taking this assumption literally, the CWA rule infers thenegationof every ground atom
not implied byW . Formally, for a setW of sentences we define

CWA(W ) = W ∪ {¬a | a is a ground atom andW 6|= a}.

To illustrate the idea, we will consider a simple example. Let GA be the set of all
ground atoms in the language and letW ⊆ GA. It is easy to see that

CWA(W ) = W ∪ {¬a | a ∈ GA \ W}

In other words, CWA derives the negation of every ground atomnot inW . This is precisely
what happens when databases are queried. If a fact is not in the database (for instance,
there is no information about a direct flight from Chicago to Dallas at 5:00pm on Delta),
the database infers that this fact is false and responds correspondingly (there isno direct
flight from Chicago to Dallas at 5:00pm on Delta).
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We note that the database may contain errors (there may in fact be a flight from Chicago
to Dallas at 5:00pm on Delta). Once the database is fixed (a newground atom is included
that asserts the existence of the flight), the derivation sanctioned previously by the CWA
rule, will not longer be made. It is a classic example of defeasible reasoning!

In the example above, CWA worked precisely as it should, and resulted in a consistent
theory. In many cases, however, the CWA rule is too strong. Itderives too many facts and
yields an inconsistent theory. For instance, ifW = {a ∨ b}, wherea, b are two ground
atoms, then

W 6|= a and W 6|= b.

Thus,CWA(W ) = {a ∨ b,¬a,¬b} is inconsistent. The question whetherCWA(W ) is
consistent is an important one. We note a necessary and sufficient condition given in [85].

Theorem 10 Let W be a set of sentences. ThenCWA(W ) is consistent if and only ifW
has a least Herbrand model.

If W is a set of ground atoms (the case discussed above) or, more generally, a consistent
Horn theory, thenW has a least Herbrand model. Thus, we obtain the following corollary
due to Reiter [110].

Corollary 11 If W is a consistent Horn theory, thenCWA(W ) is consistent.

The main result of this section shows that CWA can be expressed by means ofsu-
pernormaldefaults under the semantics of extensions. For a ground atom a we define a
supernormal default

cwa(a) =
> : ¬a

¬a

and we set

DCWA = {cwa(a) | a ∈ GA}.

We have the following result [85].

Theorem 12 LetW be a set of sentences.

1. If CWA(W ) is consistent, thenCn(CWA(W )) is the unique extension of the default
theory(DCWA, W ).

2. If (DCWA, W ) has a unique consistent extension, thenCWA(W ) is consistent and
Cn(CWA(W )) is this unique extension of(DCWA, W ).

1.2.5 Variants of Default Logic

A number of modifications of Reiter’s default logic have beenproposed in the literature
which handle several examples differently. We present someof them briefly here.

To guarantee existence of extensions, [77] has defined a default logic based on a two-
place fixed point operator. The first argument contains the believed formulas, the second



14 1.

is used to keep track of justifications of applied defaults. Adefault is only applied if its
consequent does not contradict the justification of any other applied default. Then,E is an
extension if and only if there is a setSE such that(E, SE) is a fixed point. Lukaszewicz
showed that, in his logic, both existence of extensions and semi-monotony are satisfied.

In [22], a cumulative version of default logic is presented.The basic elements of this
logic are so-calledassertionsof the form(p, Q), in whichp is a formula, andQ the set of
consistency conditions needed to derivep. A default can only be applied in an extension
if its justifications are jointly consistent with the extension and with all justifications of
other applied defaults. The logic is called cumulative as the inference relation it determines
satisfies the property ofCumulativity[79], now more commonly calledCautious Monotony
(cf. Section 1.5).

Joint consistency is also enforced in variants of default logic calledconstrained default
logics, which have been proposed independently by [116] and [31] (see also [32]). The
major difference between cumulative default logic and these two variants is that the latter
work with standard formulas and construct an additional single set containing all consis-
tency conditions of applied defaults, whereas cumulative default logic keeps track of this
information in the assertions.

A number of researchers have investigated default theorieswith preferences among the
defaults, e.g. [85, 6, 23, 113, 26]. For a comparison of some of these approaches the
reader is referred to [119]. Finally, [23] contains an approach in which reasoning not only
with, but also about priorities is possible. In this approach, the preference information is
represented in the logical language and can thus be derived and reasoned upon dynami-
cally. This makes it possible to describe conflict resolution strategies declaratively and has
interesting applications, for instance, in legal reasoning.

1.3 Autoepistemic Logic

In this section, we discuss autoepistemic logic, one of the most studied and influential
nonmonotonic logics. It was proposed by Moore in [92, 93] in areaction to an earlier
modal nonmonotonic logic of McDermott and Doyle [91]. Historically, autoepistemic
logic played a major role in the development of nonmonotoniclogics of belief. Moreover,
intuitions underlying autoepistemic logic and studied in [47] motivated the concept of a
stable model of a logic program [49]3 as discussed in detail in the next chapter of the
handbook.

1.3.1 Preliminaries, intuitions and basic results

Autoepistemic logic was introduced to provide a formal account of a way in which an
ideally rationalagent formsbeliefsets given some initial assumptions. It is a formalism in
a modal language. In our discussion we assume implicitly a fixed setAt of propositional
variables. We denote byLK the modal language generated fromAt by means of boolean
connectives and a (unary) modal operatorK. The role of the modal operatorK is to mark
formulas as “believed”. That is, intuitively, formulasKA stand for “A is believed.” We
refer to subsets ofLK asmodal theories. We call formulas inLK that do not contain

3We note however, that default logic also played a role in the development of the stable-model semantics [13]
and, in fact, the default-logic connection of stable modelsultimately turned out to be more direct [82, 15, 14].
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occurrences ofK modal-freeor propositional. We denote the language consisting of all
modal-free formulas byL.

Let us consider a situation in which we have a rule that Professor Jones, being a uni-
versity professor, normally teaches. To capture this rule in modal logic, we might say that
if we do not believe that Dr. Jones does not teach (that is, if it is possible that she does),
then Dr. Jones does teach. We might represent this rule by a modal formula4.

Kprof J ∧ ¬K¬teachesJ ⊃ teachesJ . (1.2)

Knowing onlyprof J (Dr. Jones is a professor) a rational agent should build a belief set
containingteachesJ . The problem is to define the semantics of autoepistemic logic so that
indeed it is so.

We see here a similarity with default logic, where the same rule is formalized by a
default

prof (J):teaches(J)/teaches(J) (1.3)

(cf. Section 1.2.1). In default logic, givenW = {prof (J)}, the conclusionteaches(J)
is supported as({prof (J):teaches(J)/teaches(J)}, W ) has exactly one extension and it
does containteaches(J).

The correspondence between the formula (1.2) and the default (1.3) is intuitive and
compelling. The key question is whether formally the autoepistemic logic interpretation of
(1.2) is the same as the default logic interpretation of (1.3). We will return to this question
later.

Before we proceed to present the semantics of autoepistemiclogic, we will make a
few comments on (classical) modal logics — formal systems ofreasoning with modal
formulas. This is a rich area and any overview that would do itjustice is beyond the scope
of this chapter. For a good introduction, we refer to [28, 57]. Here we only mention that
many important modal logics are defined by a selection of modal axioms such K, T, D, 4,
5, etc. For instance, the axioms K, T, 4 and 5 yield the well-known modal logicS5. The
consequence operator for a modal logicS, sayCnS , is defined syntactically in terms of the
corresponding provability relation5.

For the reader familiar withKripke models[28, 57], we note that the consequence oper-
atorCnS can often be described in terms of a class ofKripke models, sayC: A ∈ CnS(E)
if and only if for every Kripke modelM ∈ C such thatM |=K E, M |=K A, where|=K

stands for the relation of satisfiability of a formula or a setof formulas in a Kripke model.
For instance, the consequence operator in the modal logicS5 is characterized byuniver-
sal Kripke models. This characterization played a fundamentalrole in the development of
autoepistemic logic. To make our chapter self-contained, rather than introducing Kripke
models formally, we will use a different but equivalent characterization of the consequence

4To avoid problems with the treatment of quantifiers, we restrict our attention to the propositional case.
Consequently, we have to list “normality” rules explicitlyfor each object in the domain rather than use schemata
(formulas with variables) to represent concisely familiesof propositional rules, as it is possible in default logic.
The “normality” rule in our example concerns Professor Jones only. If there were more professors in our domain,
we would need rules of this type for each of them.

5Proofs in a modal logic use as premises given assumptions (ifany), instances of propositional tautologies
in the languageLK , and instances of modal axioms of the logic. As inference rules, they use modus ponens and
thenecessitation rule, which allows one to concludeKA onceA has been derived.



16 1.

operator inS5 in terms ofpossible-world structures, which we introduce formally later in
the text.

After this brief digression we now come back to autoepistemic logic. What is anideally
rational agentor, more precisely, which modal theories could be taken as belief sets of such
agents? Stalnaker [125] argued that to be a belief set of an ideally rational agent a modal
theoryE ⊆ LK must satisfy three closure properties.

First, E must be closed under the propositional consequence operator. We will de-
note this operator byCn6. Thus, the first property postulated by Stalnaker can be stated
concisely as follows:

B1: Cn(E) ⊆ E.

We note that modal logics offer consequence operators whichare stronger than the operator
Cn. One might argue that closure under one of these operators might be a more appropriate
for the condition (B1). We will return to this issue in a moment.

Next, Stalnaker postulated that theories modeling belief sets of ideally rational agents
must be closed underpositive introspection: if an agent believes inA, then the agent
believes she believesA. Formally, we will require that a belief setE satisfies:

B2: if A ∈ E, thenKA ∈ E.

Finally, Stalnaker postulated that theories modeling belief sets of ideally rational agents
must also be closed undernegative introspection: if an agent does not believeA, then the
agent believes she does not believeA. This property is formally captured by the condition:

B3: if A /∈ E, then¬KA ∈ E.

Stalnaker’s postulates have become commonly accepted as the defining properties of
belief sets of an ideally rational agent. Thus, we refer to modal theories satisfying con-
ditions (B1)–(B3) simply asbelief sets. The original term used by Stalnaker was astable
theory. We choose a different notation since in nonmonotonic reasoning the termstableis
now most commonly associated with a class of models of logic programs, and there are
fundamental differences between the two notions.

Belief sets have a rich theory [85]. We cite here only two results that we use later in
the chapter. The first result shows that in the context of the conditions (B2) and (B3) the
choice of the consequence operator for the condition (B1) becomes essentially immaterial.
Namely, it implies that no matter what consequence relationwe choose for (B1), as long
as it contains the propositional consequence relation and is contained in the consequence
relation for S5, we obtain the same notion of a belief set.

Proposition 13 If E ⊆ LK is a belief set, thenE is closed under the consequence relation
in the modal logicS5.

The second result shows that belief sets are determined by their modal-free formulas.
This property leads to a representation result for belief sets.

6When applying the propositional consequence operator tomodaltheories, as we do here, we treat formulas
KA as propositional variables.
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Proposition 14 Let T ⊆ L be closed under propositional consequence. ThenE =
CnS5(T ∪{¬KA | A ∈ L\T}) is a belief set andE∩L = T . Moreover, ifE is a belief set
thenT = E ∩ L is closed under propositional consequence andE = CnS5(T ∪ {¬KA |
A ∈ L \ T}).

Modal nonmonotonic logics are meant to provide formal meansto study mechanisms
by which an agent forms belief sets starting with a setT of initial assumptions. These belief
sets must containT but may also satisfy some additional properties. A precise mapping
assigning to a set of modal formulas a family of belief sets iswhat determines a modal
nonmonotonic logic.

An obvious possibility is to associate with a setT ⊆ LK all belief setsE such that
T ⊆ E. This choice, however, results in a formalism which ismonotone. Namely, if
T ⊆ T ′, then every belief set forT ′ is a belief set forT . Consequently, the set of “safe”
beliefs — beliefs that belong to every belief set associatedwith T — grows monotonically
as T gets larger. In fact, this set of safe beliefs based onT coincides with the set of
consequences ofT in the logic S5. As we aim to capture nonmonotonic reasoning,this
choice is not of interest to us here.

Another possibility is to employ a minimization principle.Minimizing entire belief
sets is of little interest as belief sets are incomparable with respect to inclusion and so,
each of them is inclusion-minimal. Thus, this form of minimization does not eliminate any
of the belief sets containingT , and so, it is equivalent to the approach discussed above.

A more interesting direction is to apply the minimization principle to modal-free frag-
ments of belief sets (cf. Proposition 14, which implies thatthere is a one-to-one corre-
spondence between belief sets and sets of modal-free formulas closed under propositional
consequence). The resulting logic is in fact nonmonotonic and it received some attention
[54].

The principle put forth by Moore when defining the autoepistemic logic can be viewed
as yet another form of minimization. The conditions (B1)–(B3) imply that every belief set
E containingT satisfies the inclusion

Cn(T ∪ {KA | A ∈ E} ∪ {¬KA | A /∈ E}) ⊆ E.

Belief sets, for which the inclusion is proper contain beliefs that do not follow from initial
assumptions and from the results of “introspection” and so,are undesirable. Hence, Moore
[93] proposed to associate withT only those belief setsE, which satisfy theequality:

Cn(T ∪ {KA | A ∈ E} ∪ {¬KA | A /∈ E}) = E. (1.4)

In fact, when a theory satisfies (1.4), we no longer need to assume that it is a belief set —
(1.4) implies that it is.

Proposition 15 For everyT ⊆ LK , if E ⊆ LK satisfies (1.4) thenE satisfies (B1)–(B3),
that is, it is a belief set.

Moore called belief sets defined by (1.4)stable expansionsof T . We will refer to them
simply asexpansionsof T , dropping the termstabledue to the same reason as before. We
formalize our discussion in the following definition.

Definition 4 LetT be a modal theory. A modal theoryE is anexpansionof T if E satisfies
the identity (1.4).
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Belief sets have an elegant semantic characterization in terms of possible-world struc-
tures. LetI be the set of all 2-valued interpretations (truth assignments) of At . Possible-
world structuresare subsets ofI. Intuitively, a possible-world structure collects all inter-
pretations thatmightbe describing the actual world and leaves out those that definitely do
not.

A possible-world structure is essentially a Kripke model with a total accessibility re-
lation [28, 57]. The difference is that the universe of a Kripke model is required to be
nonempty, which guarantees that thetheoryof the model (the set of all formulas true in
the model) is consistent. Some modal theories consistent with respect to the propositional
consequence relation determine inconsistent sets of beliefs. Allowing possible-world struc-
tures to be empty is a way to capture such situations and differentiate them from those
situations, in which a modal theory determines no belief sets at all.

Possible-world structures interpret modal formulas, thatis, assign to them truth values.

Definition 5 LetQ ⊆ I be a possible-world structure andI ∈ I a two-valued interpreta-
tion. We define thetruth functionHQ,I inductively as follows:

1. HQ,I(p) = I(p), if p is an atom.

2. HQ,I(A1 ∧ A2) = true if HQ,I(A1) = true andHQ,I(A2) = true. Otherwise,
HQ,I(A1 ∧ A2) = false.

3. Other boolean connectives are treated similarly.

4. HQ,I(KA) = true, if for every interpretationJ ∈ Q, HQ,J (A) = true. Other-
wise,HQ,I(KA) = false.

It follows directly from the definition that for every formula A ∈ LK , the truth value
HQ,I(KA) does not depend onI. It is fully determined by the possible-world structureQ
and we will denote it byHQ(KA), droppingI from the notation. SinceQ determines the
truth value of every modal atom, every modal formulaA is eitherbelieved(HQ(KA) =
true) or not believedin Q (HQ(KA) = false). In other words, theepistemicstatus of
every modal formula is well defined in every possible-world structure.

The theoryof a possible-world structureQ is the set of all modal formulas that are
believedin Q. We denote it byTh(Q). Thus, formally,

Th(Q) = {A | HQ(KA) = true}.

We now present a characterization of belief sets in terms of possible-world structures,
which we promised earlier.

Theorem 16 A set of modal formulasE ⊆ LK is a belief set if and only if there is a
possible-world structureQ ⊆ I such thatE = Th(Q).

Expansions of a modal theory can also be characterized in terms of possible-world
structures. The underlying intuitions arise from considering a way to revise possible-world
structures, given a setT of initial assumptions. The characterization is also due toMoore.
Namely, for every modal theoryT , Moore [92] defined an operatorDT onP(I) (the space
of all possible-world structures) by setting

DT (Q) = {I | HQ,I(A) = true, for everyA ∈ T}.
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The operatorDT specifies a process to revise belief sets encoded by the corresponding
possible-world structures. Given a modal theoryT ⊆ LK , the operatorDT revises a
possible-world structureQ with a possible-world structureDT (Q). This revised structure
consists of all interpretations that areacceptablegiven the current structureQ and the
constraints on belief sets encoded byT . Specifically, the revision consists precisely of
those interpretations that make all formulas inT true with respect toQ.

Fixed points of the operatorDT are of particular interest. They represent “stable”
possible-world structures (and so, belief sets) — they cannot be revised any further. This
property is behind the role they play in the autoepistemic logic.

Theorem 17 LetT ⊆ LK . A set of modal formulasE ⊆ LK is an expansion ofT if and
only if there is a possible-world structureQ ⊆ I such thatQ = DT (Q) andE = Th(Q).

This theorem implies a systematic procedure for constructing expansions offinitemodal
theories (or, to be more precise, possible-world structures that determine expansions). Let
us continue our “Professor Jones” example and let us look at atheory

T = {prof J , Kprof J ∧ ¬K¬teachesJ ⊃ teachesJ}.

There are two propositional variables in our language and, consequently, four propositional
interpretations:

I1 = ∅ (neitherprof J nor teachesJ is true)
I2 = {prof J}
I3 = {teachesJ}
I4 = {prof J , teachesJ}.

There are 16 possible-world structures one can build of these four interpretations. Only
one of them, though,Q = {prof J , teachesJ}, satisfiesDT (Q) = Q and so, generates
an expansion ofT . We skip the details of verifying it, as the process is long and tedious,
and we present a more efficient method in the next section. We note however, that for the
basic “Professor Jones” example autoepistemic logic givesthe same conclusions as default
logic.

We close this section by noting that the autoepistemic logiccan also be obtained as a
special case of a general fixed point schema to define modal nonmonotonic logics proposed
by McDermott [90]. In this schema, we assume that an agent uses some modal logicS
(extending propositional logic) to capture her basic meansof inference. We then say that a
modal theoryE ⊆ LK is anS-expansionof a modal theoryT if

E = CnS(T ∪ {¬KA | A /∈ E}). (1.5)

In this equation,CnS represents the consequence relation in the modal logicS. If E
satisfies (1.5), thenE is closed under the propositional consequence relation. Moreover,
E is closed under the necessitation rule and so,E is closed under positive introspection.
Finally, since{¬KA | A /∈ E} ⊆ E, E is closed under negative introspection. It follows
that solutions to (1.5) are belief sets containingT . They can be taken as models of belief
sets of agents reasoning by means of modal logicS and justifying what they believe on
the basis of initial assumptions inT andassumptionsabout whatnot to believe (negative
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introspection). By choosing different monotone logicsS, we obtain from this schema
different classes ofS-expansions ofT .

If we disregard inconsistent expansions, autoepistemic logic can be viewed as a special
instance of this schema, withS = KD45, the modal logic determined by the axioms K, D,
4 and 5 [57, 85]. Namely, we have the following result.

Theorem 18 Let T ⊆ LK . If E ⊆ LK is consistent, thenE is and expansion ofT if and
only if E is a KD45-expansion ofT , that is,

E = CnKD45(T ∪ {¬KA | A /∈ E}).

1.3.2 Computational Properties

The key reasoning problems for autoepistemic logic are decidingskeptical inference(whether
a formula is in all expansions),credulous inference(whether a formula is in some ex-
pansion), and finding expansions. Like default logic, first-order autoepistemic logic is
not semi-decidable even when quantifying into the scope of the modal operator is not
allowed [94]. If quantifying-in is allowed, the reasoning problems are highly undecid-
able [63].

In order to clarify the computational properties of propositional autoepistemic logic
we present a finitary characterization of expansions based on full sets[94, 95]. A full set
is constructed from theKA and¬KA subformulas of the premises and it serves as the
characterizing kernel of an expansion. An overview of otherapproaches to characterizing
expansions can be found in [95].

The characterization is based on the set of all subformulas of the formKA in a set of
premisesT . We denote this set bySfK(T ). We stress that in the characterization only the
classical consequence relation (Cn) is used whereKA formulas are treated as propositional
variables and no modal consequence relation is needed. To simplify the notation, for a set
T of formulas we will write¬T as a shorthand for{¬F | F ∈ T}.

Definition 6 (Full Sets) For a set of formulasT , a setS ⊆ SfK(T ) ∪ ¬SfK(T ) is T -full
if and only if the following two conditions hold for everyKA ∈ SfK(T ):

• A ∈ Cn(T ∪ S ) if and only ifKA ∈ S .

• A 6∈ Cn(T ∪ S ) if and only if¬KA ∈ S .

In fact, for aT -full setS , the classical consequences ofT ∪ S provide the modal-free part
of an expansion. As explained in Proposition 14 this uniquely determines the expansion.
Here we give an alternative way of constructing an expansionfrom a full set presented
in [95] which is more suitable for automation. For this we employ a restricted notion of
subformulas:Sf p

K(F ) is the set ofprimary subformulas ofF , i.e., all subformulas of the
form KA of F which are not in the scope of anotherK operator inF . For example, ifp
andq are atomic,Sf p

K(K(¬Kp → q)∧K¬q) = {K(¬Kp → q), K¬q}. The construction
uses a simple consequence relation|=K which is given recursively on top of the classical
consequence relationCn. It turns out that this consequence relation corresponds exactly to
membership in an expansion when given its characterizing full set.
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Definition 7 (K-consequence)Given a set of formulasT and a formulaF ,

T |=K F if and only ifF ∈ Cn(T ∪ SBT (F ))

where SBT (F ) = {KA ∈ Sf p
K(F ) | T |=K A} ∪ {¬KA ∈ ¬Sf p

K(F ) | T 6|=K A}.

For an expansionE of T , there is a correspondingT -full set

{KF ∈ E | KF ∈ SfK(T )} ∪ {¬KF ∈ E | KF ∈ SfK(T )}

and for aT -full setS ,

{F | T ∪ S |=K F}

is an expansion ofT . In fact it can be shown [95] that there is a one-to-one correspondence
between full sets and expansions.

Theorem 19 (Expansions in Terms of Full Sets)Let T be a set of autoepistemic formu-
las. Then a function SET defined as

SET (S ) = {F | T ∪ S |=K F}

gives a bijective mapping from the set ofT -full sets to the set of expansions ofT and
for a T -full setS , SET (S ) is the unique expansionE of T such thatS ⊆ {KF | F ∈
E} ∪ {¬KF | F 6∈ E}.

Example 2 Consider our “Professor Jones” example and a set of formulas

T = {prof J , Kprof J ∧ ¬K¬teachesJ ⊃ teachesJ}.

NowSfK(T ) = {Kprof J , K¬teachesJ} and there are four possible full sets:

{¬Kprof J ,¬K¬teachesJ}, {Kprof J ,¬K¬teachesJ},
{¬Kprof J , K¬teachesJ}, {Kprof J , K¬teachesJ}

It is easy to verify that onlyS1 = {Kprof J ,¬K¬teachesJ} satisfies the conditions in Def-
inition 6, that is,prof ∈ Cn(T ∪S1) and¬teachesJ 6∈ Cn(T ∪S1). Hence,T has exactly
one expansion SET (S1) which contains, for instance,KKprof J and¬K¬KteachesJ as
T ∪ S1 |=K KKprof J andT ∪ S1 |=K ¬K¬KteachesJ hold.

Example 3 Consider a set of formulas

T ′ = {Kp ⊃ p}.

Now SfK(T ′) = {Kp} and there are two possible full sets:{¬Kp} and {Kp} which
are both full. For instance,p ∈ Cn(T ′ ∪ {Kp}). Hence,T ′ has exactly two expansions
SET ′({¬Kp}) and SET ′({Kp}).

The finitary characterization of expansions in Theorem 19 implies that propositional
autoepistemic reasoning isdecidableand can be implemented inpolynomial space. This
is because the conditions on a full set and on membership of anarbitrary autoepistemic
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formula in an expansion induced by a full set are based on the classical propositional
consequence relation which is decidable in polynomial space.

Similar to default logic, deciding whether an expansion exists and credulous inference
areΣP

2
-complete problems and sceptical inference isΠP

2
-complete for autoepistemic logic

as well as for many other modal nonmonotonic logics [51, 94, 95, 121]. This implies that
modal nonmonotonic reasoning is strictly harder than classical reasoning (unless the poly-
nomial hierarchy collapses) and achieving tractability requires substantial restrictions on
how modal operators can interact [83, 84]. For more information on automating autoepis-
temic reasoning, see for instance [97, 36].

1.4 Circumscription

1.4.1 Motivation

Circumscription was introduced by John McCarthy [86, 87]. Many of its formal aspects
were worked out by Vladimir Lifschitz who also wrote an excellent overview [74]. We
follow here the notation and terminology used in this overview article.

The idea underlying circumscription can be explained usingthe teaching professors
example discussed in the introduction. There we consideredusing the following first order
formula to expressprofessors normally teach:

∀x(prof (x) ∧ ¬abnormal(x) ⊃ teaches(x)).

The problem with this formula is the following: in order to apply it to Professor Jones, we
need to prove that Jones is not abnormal. In many cases we simply do not have enough
information to do this. Intuitively, we do not expect objects to be abnormal — unless we
have explicit information that tells us they indeed are abnormal. Let us assume there is no
reason to believe Jones is abnormal. We implicitly assume — in McCarthy’s words: jump
to the conclusion —¬abnormal(Jones) and use it to concludeteaches(Jones).

What we would like to have is a mechanism which models this form of jumping to
conclusions. Note that what is at work here is a minimizationof the extent of the predicate
abnormal: we want as few objects as possible — given the available information — to
satisfy this predicate. How can this be achieved?

The answer provided by circumscription has a syntactical and a corresponding seman-
tical side. From the syntactical point of view, circumscription is a transformation (more
precisely, a family of transformations) of logical formulas. Given a sentenceA represent-
ing the given information, circumscription produces a logically stronger sentenceA∗. The
formulas which follow fromA using circumscription are simply the formulas classically
entailed byA∗. In our example,A contains the given information about professors, their
teaching duties, and Jones. In addition to this information, A∗ also expresses that the ex-
tent ofabnormal is minimal. Note that in order to express minimality of a predicate one
has to quantify over predicates. For this reasonA∗ will be a second order formula.

Semantically, circumscription gives up the classical point of view that all models of a
sentenceA have to be regarded as equal possibilities. In our example, different models of
A may have different extents for the predicateabnormal (the set of objects belonging to
the interpretation ofabnormal) even if the domain of the models is the same. It is natural
to consider models with fewer abnormal objects — in the senseof set inclusion — as more
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A(P ) CIRC[A(P ); P ]

P (a) ∀x(P (x) ≡ x = a)
P (a) ∧ P (b) ∀x(P (x) ≡ (x = a ∨ x = b))
P (a) ∨ P (b) ∀x(P (x) ≡ (x = a)) ∨ ∀x(P (x) ≡ x = b))

¬P (a) ∀x¬P (x)
∀x(Q(x) ⊃ P (x)) ∀x(Q(x) ≡ P (x))

Table 1.1: Examples of circumscribingP

plausible than those with more abnormal objects. This induces a preference relation on
the set of all models. The idea now is to restrict the definition of entailment to the most
preferred models only: a formulaf is preferentially entailed byA if and only if f is true
in all maximally preferred models ofA.

We will see that this elegant model theoretic construction captures exactly the syntactic
transformation described above.

1.4.2 Defining Circumscription

For the definition of circumscription some abbreviations are useful. LetP andQ be two
predicate symbols of the same arityn:

P = Q abbreviates ∀x1 · · ·xn((P (x1, . . . , xn) ≡ Q(x1, . . . , xn))
P ≤ Q abbreviates ∀x1 · · ·xn((P (x1, . . . , xn) ⊃ Q(x1, . . . , xn))
P < Q abbreviates (P ≤ Q) ∧ ¬(P = Q).

The formulas express:P andQ have the same extent, the extent ofP is a subset of the
extent ofQ, and the extent ofP is a proper subset of the extent ofQ, respectively.

Definition 8 Let A(P ) be a sentence containing a predicate symbolP . Let p be a pred-
icate variable of the same arity asP . The circumscription ofP in A(P ), which will be
denoted byCIRC[A(P ); P ], is the second order sentence

A(P ) ∧ ¬∃p[A(p) ∧ p < P ].

By A(p) we denote here the result of uniformly substituting predicate constantP in A(P )
by variablep. Intuitively, the second order formula¬∃p[A(p) ∧ p < P ] says: it is not
possible to find a predicatep such that

1. p satisfies what is said inA(P ) aboutP , and

2. the extent ofp is a proper subset of the extent ofP .

In other words: the extent ofP is minimal subject to the conditionA(P ).
Table 1.1 presents some simple formulasA(P ) together with the result of circumscrib-

ing P in A(P ). The examples are taken from [74].
Although it gives desired results in simple cases, this formof circumscription is not yet

powerful enough for most applications. It allows us to minimize the extent of a predicate,
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but only if this does not change the interpretation of any other symbol in the language.
In the Professor Jones example, for instance, minimizing the predicateabnormal alone is
not sufficient to concludeteaches(Jones). To obtain this conclusion, we have to make
sure that the extent ofteaches is allowed to change during the minimization ofabnormal.
This can be achieved with the following more general definition:

Definition 9 LetA(P, Z1, . . . , Zm) be a sentence containing the predicate constantP and
predicate/function constantsZi. Let p, z1, . . . , zm be predicate/function variables of the
same type and arity asP, Z1, . . . , Zm. The circumscription ofP in A(P, Z1, . . . , Zm) with
variedZ1, . . . , Zm, denotedCIRC[A(P, Z1, . . . , Zm); P ; Z1, . . . , Zm], is the second or-
der sentence

A(P, Z1, . . . , Zm) ∧ ¬∃pz1 . . . zm[A(p, z1, . . . zm) ∧ p < P ].

A further generalization where several predicates can be minimized in parallel is also very
useful. Whenever we want to represent several default rules, we need different abnormality
predicatesab1, ab2 etc., since being abnormal with respect to one default is notnecessarily
related to being abnormal with respect to another default.

We first need to generalize the abbreviationsP = Q, P ≤ Q andP < Q to the
case whereP andQ are sequences of predicate symbols. LetP = P1, . . . , Pn andQ =
Q1, . . . , Qn, respectively:

P = Q abbreviates P1 = Q1 ∧ . . . ∧ Pn = Qn

P ≤ Q abbreviates P1 ≤ Q1 ∧ . . . ∧ Pn ≤ Qn

P < Q abbreviates P ≤ Q ∧ ¬(P = Q).

Here is the generalized definition:

Definition 10 LetP = P1, . . . , Pk be a sequence of predicate constants,Z = Z1, . . . , Zm

a sequence of predicate/function constants. Furthermore,let A(P, Z) be a sentence con-
taining the predicate constantsPi and predicate/function constantsZj . Letp = p1, . . . pk

andz = z1, . . . , zm be predicate/function variables of the same type and arity asP1, . . . , Pk,
respectivelyZ1, . . . , Zm. The (parallel) circumscription ofP in A(P, Z) with variedZ,
denotedCIRC[A(P, Z); P ; Z], is the second order sentence

A(P, Z) ∧ ¬∃pz[A(p, z) ∧ p < P ].

Predicate and function constants which are neither minimized nor varied, i.e., neither inP
nor inZ, are called fixed.

1.4.3 Semantics

Circumscription allows us to minimize the extent of predicates. This can be elegantly
described in terms of a preference relation on the models of the circumscribed sentenceA.
Intuitively, we prefer a modelM1 over a modelM2 whenever the extent of the minimized
predicate(s)P is smaller inM1 than inM2. Of course,M1 can only be preferred over
M2 if the two models are comparable: they must have the same universe, and they have to
agree on the fixed constants.

In the following, for a structureM we use|M | to denote the universe ofM andM [[C]]
to denote the interpretation of the (individual/function/predicate) constantC in M .



G. Brewka, I. Niemelä, M. Truszczýnski 25

Definition 11 Let M1 and M2 be structures,P a sequence of predicate constants,Z a
sequence of predicate/function constants.M1 is at least asP ; Z-preferred asM2, denoted
M1 ≤P ;Z M2, whenever the following conditions hold:

1. |M1| = |M2|,

2. M1[[C]] = M2[[C]] for every constantC which is neither inP nor in Z,

3. M1[[Pi]] ⊆ M2[[Pi]] for every predicate constantPi in P .

The relation≤P ;Z is obviously transitive and reflexive. We say a structureM is ≤P ;Z-
minimal within a set of structuresM whenever there is no structureM ′ ∈ M such that
M ′ <P ;Z M . Here<P ;Z is the strict order induced by≤P ;Z : M ′ <P ;Z M if and only if
M ′ ≤P ;Z M and notM ≤P ;Z M ′.

The following proposition shows that theP ; Z-minimal models ofA capture exactly
the circumscription ofP in A with variedZ:

Proposition 20 M is a model of CIRC[A;P;Z] if and only ifM is ≤P ;Z-minimal among
the models ofA.

It should be pointed out that circumscription may lead to inconsistency, even if the circum-
scribed sentenceA is consistent. This happens whenever we can find a better model for
each model, implying that there is an infinite chain of more and more preferred models. A
discussion of conditions under which consistency of circumscription is guaranteed can be
found in [74]. For instance, it is known thatCIRC[A; P ; Z] is consistent wheneverA is
universal (of the form∀xA wherex is a tuple of object variables andA is quantifier-free)
andZ does not contain function symbols.

1.4.4 Computational Properties

In circumscription the key computational problem is that ofsceptical inference, i.e., de-
termining whether a formula is true in all minimal models. However, general first-order
circumscription is highly uncomputable [120]. This is not surprising as circumscription
transforms a first order sentence into a second order formulaand it is well-known that
second order logic is not even semi-decidable. This means that in order to compute cir-
cumscription we cannot just use our favorite second-order prover - such a prover simply
cannot exist. We can only hope to find computational methods for certain special cases of
first order formulas.

We first discuss techniques for computing circumscriptive inference in the first order
case and then present a finitary characterization of minimalmodels which illustrates com-
putational properties of circumscription.

Methods for computing circumscription can be roughly categorized as follows:

• guess and verify: the idea is to guess right instances of second order variables to
prove conjectures about circumscription. Of course, this is a method requiring ade-
quate user interaction, not a full mechanization,

• translation to first order logic: this method is based on results depending on syntactic
restrictions and transformation rules,
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• specialized proof procedures: these can be modified first order proof procedures or
procedures for restricted second order theories.

As an illustration of the guess and verify method consider the Jones example again. Ab-
breviatingabnormal with ab we have

A(ab, teaches) = prof (J) ∧ ∀x(prof (x) ∧ ¬ab(x) ⊃ teaches(x)).

We are interested inCIRC[A(ab, teaches); ab; teaches] which is

A(ab, teaches) ∧ ¬∃pz[A(p, z) ∧ p < ab].

By simple equivalence transformations and by spelling out the abbreviationp < ab we
obtain

A(ab, teaches) ∧ ∀pz[A(p, z) ∧ ∀x(p(x) ⊃ ab(x)) ⊃ ∀x(ab(x) ⊃ p(x))].

If we substitute the right predicate expressions for the nowuniversally quantified predicate
variablesp andz, we can indeed proveteaches(J). By a predicate expression we mean
an expression of the formλx1, . . . , xn.F whereF is a first order formula. Applying this
predicate expression to n termst1, . . . , tn yields the formula obtained by substituting all
variablesxi in F uniformly by ti.

In our example we guess that no object isab, that is we substitute forp the expression
λx.false. Similarly, we guess that professors are the teaching objects, i.e. we substitute
for z the expressionλx.prof (x). The resulting first order formula (after simple equivalence
transformations) is

A(ab, teaches)∧
[prof (J) ∧ ∀x(prof (x) ⊃ prof (x)) ∧ ∀x(false ⊃ ab(x)) ⊃ ∀x(ab(x) ⊃ false)].

It is easy to verify that the first order formula obtained withthese substitutions indeed
implies teaches(J). In cases where derivations are more difficult one can, of course,
use a standard first order theorem prover to verify conjectures after substituting predicate
expressions.

For the second method, the translation of circumscription to first order logic, a number
of helpful results are known. We cannot go into much detail here and refer the reader to
[74] for an excellent overview. As an example of the kind of results used we present two
useful propositions.

LetA(P ) be a formula andP a predicate symbol occurring inA. A formulaA, without
any occurrence of⊃ and≡, is positive/negativein P if all occurrences ofP in A(P ) are
positive/negative. (We recall that the occurrence of a predicate symbolP in a formula
A(P ) without occurrences of⊃ and≡ is positive if the number of its occurrences in the
range of the negation operator is positive. Otherwise, it isnegative.)

Proposition 21 Let B(P ) be a formula without any occurrences of⊃ and≡. If B(P ) is
negative inP , thenCIRC[A(P ) ∧ B(P ); P ] is equivalent toCIRC[A(P ); P ] ∧ B(P ).

Proposition 22 LetA(P, Z) be a formula without any occurrences of⊃ and≡. If A(P, Z)
is positive inP , thenCIRC[A(P, Z); P ; Z] is equivalent to

A(P, Z) ∧ ¬∃xz[P (x) ∧ A(λy(P (y) ∧ x 6= y), z)].
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Herex andy stand forn-tuples of distinct object variables, wheren is the arity of predicate
symbolP . As a corollary of these propositions we obtain thatCIRC[A(P ) ∧ B(P ); P ]
is equivalent to a first order formula wheneverA(P ) is positive andB(P ) negative inP
(assumingA(P ) andB(P ) do not contain⊃ and≡).

Apart from translations to first order logic, translations to logic programming have also
been investigated [48].

Several specialized theorem proving methods and systems have been developed for
restricted classes of formulas. Among these we want to mention Przymusinski’s MILO-
resolution [109], Baker and Ginsberg’s argument based circumscriptive prover [7], the
tableaux based method developed by Niemelä [99], and two algorithms based on second
order quantifier elimination: the SCAN algorithm [45, 102] and the DLS algorithm [37].

We now turn to the question how minimal models, the key notionin circumscription,
can be characterized in order to shed light on computationalproperties of circumscription
and its relationship to classical logic. We present a characterization of minimal models
where the minimality of a model can be determined independently of other models using
a test for classical consequence. We consider here parallelpredicate circumscription in the
clausal case and with respect to Herbrand interpretations and a characterization proposed
in [99]. A similar characterization but for the propositional case has been used in [41] in
the study of the computational complexity of propositionalcircumscription.

Definition 12 (Grounded Models) Let T be a set of clauses and letP andR be sets of
predicates. A Herbrand interpretationM is said to begroundedin 〈T, P, R〉 if and only if
for all ground atomsp(~t) such thatp ∈ P , M |= p(~t) impliesp(~t) ∈ Cn(T ∪N〈P,R〉(M))
where

N〈P,R〉(M) = {¬q(~t) | q(~t) is a ground atom, q ∈ P ∪ R, M 6|= q(~t)} ∪

{q(~t) | q(~t) is a ground atom, q ∈ R, M |= q(~t)}.

Theorem 23 (Minimal Models) Let T be a set of clauses and letP andZ be the sets of
minimized and varied predicates, respectively. A HerbrandinterpretationM is a ≤P ;Z-
minimal model ofT if and only ifM is a model ofT and grounded in〈T, P, R〉 whereR
is the set of predicates inT that are in neitherP nor Z.

Example 4 LetT = {p(x)∨¬q(x)} and let the underlying language have only one ground
terma. Then the Herbrand base is{p(a), q(a)}. Consider the sets of minimized predicates
P = {p} and varied predicatesZ = ∅. Then the set of fixed predicatesR = {q}. Now
the Herbrand interpretationM = {p(a), q(a)}, which is a model ofT , is grounded in
〈T, P, R〉 becauseN〈P,R〉(M) = {q(a)} andp(a) ∈ Cn(T ∪ N〈P,R〉(M)) holds. Hence,
M is a minimal model ofT . If Z = {q}, thenR = ∅ andM is not grounded in〈T, P, R〉
becauseN〈P,R〉(M) = ∅ andp(a) 6∈ Cn(T ∪ N〈P,R〉(M)). Thus, ifp is minimized butq
is varied,M is not a minimal model ofT .

Theorem 23 implies that circumscriptive inference is decidable in polynomial space in
the propositional case. Like for default logic, it is strictly harder than classical proposi-
tional reasoning unless the polynomial hierarchy collapses as it isΠP

2
-complete [40, 41].

For tractability considerable restrictions are needed [27].
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1.4.5 Variants

Several variants of circumscription formalizing different kinds of minimization have been
developed. For instance, pointwise circumscription [71] allows us to minimize the value
of a predicate for each argument tuple separately, rather than minimizing the extension
of the predicate. This makes it possible to specify very flexible minimization policies.
Autocircumscription [105] combines minimization with introspection.

We will focus here on prioritized circumscription [70]. In many applications some
defaults are more important than others. In inheritance hierarchies, for instance, a default
representing more specific information is intuitively expected to “win” over a conflicting
default: if birds normally fly, penguins normally don’t, then one would expect to conclude
that a penguin doesn’t fly, although it is a bird. This can be modeled by minimizing some
abnormality predicates with higher priority than others.

Prioritized circumscription splits the sequenceP of minimized predicates into disjoint
segmentsP 1, . . . , P k. Predicates inP 1 are minimized with highest priority, followed by
those inP 2 etc. Semantically, this amounts to a lexicographic comparison of models.
We first compare two modelsM1 andM2 with respect to≤P 1,Z , whereZ are the varied
symbols. If the models are incomparable, or if one of the models is strictly preferred
(<P 1,Z holds), then the relationship between the models is established and we are done. If
M1 =P 1,Z M2, we go on with≤P 2,Z , etc.

The prioritized circumscription ofP 1, . . . , P k in A with variedZ is denoted

CIRC[A; P 1 > . . . > P k; Z].

We omit its original definition and rather present a characterization based on a result in
[70] which shows that prioritized circumscription can be reduced to a sequence of parallel
circumscriptions:

Proposition 24 CIRC[A; P 1 > . . . > P k; Z] is equivalent to the conjunction of circum-
scriptions

k
∧

i=1

CIRC[A; P i; P i+1, . . . , P k, Z]

1.5 Nonmonotonic Inference Relations

Having discussed three specific nonmonotonic formalisms inconsiderable detail, we will
now move on to an orthogonal theme in nonmonotonic reasoningresearch: an abstract
study of inference relations associated with nonmonotonic(defeasible) reasoning. Circum-
scription fits in this theme quite well — it can be viewed as an example of a preferential
model approach, yielding a preferential inference relation. However, as we mention again
at the end of this chapter, it is not so for default and autoepistemic logics. In fact, casting
these two and other fixed point logics in terms of the semanticapproach to nonmonotonic
inference we are about to present is one of major problems of nonmonotonic reasoning
research.

Given what we know about the world, when could a formulaB reasonably be con-
cluded from a formulaA? One “safe” answer is provided by the classical concept of
entailment. LetT be a set of first-order logic sentences (an agent’s knowledgeabout the
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world). The agentclassicallyinfers a formulaB if B holds ineverymodel ofT in which
A holds.

However, the agent’s knowledge of the world is typically incomplete, and so, inference
relations based on formalisms of defeasible reasoning are of significant interest, too. Under
circumscription, the agent might inferB from A if B holds in everyminimalmodel ofT ,
in whichA holds,A p∼T,circ B. In default logic, assuming the knowledge of the world is
given in terms of a setD of defaults, the agent might inferB from A, A p∼D B, if B is in
everyextension of the default theory(D, {A}).

These examples suggest that inference can be modeled as a binary relation onL. The
question we deal with in this section is: which binary relations onL are inference relations
and what are their properties?

In what follows, we restrict ourselves to the case whenL consists of formulas of propo-
sitional logic. We use the infix notation for binary relations and writeA p∼ B to denote
thatB follows fromA, under a concept of inference modeled by a binary relationp∼ onL.

1.5.1 Semantic Specification of Inference Relations

Every propositional theoryT determines a set of itsmodels, Mod(T ), consisting of propo-
sitional interpretations satisfyingT . These interpretations can be regarded as complete
specifications of worlds consistent withT or, in other words, possible givenT .

An agent whose knowledge is described byT might reside in any of these worlds.
Such an agent may decide to inferB ∈ L from A ∈ L, writtenA `T B, if in everyworld
in which A holds,B holds, as well. This approach sanctions only the most conservative
inferences. They will hold no matter what additional information about the world an agent
may acquire. Inference relations of the form̀T are important. They underlie classical
propositional logic and are directly related to the logicalentailment relation|=. Indeed, we
have thatA `T B if and only if T, A |= B.

The class of inference relations of the form̀T has a characterization in terms of ab-
stract properties of binary relations onL. The list gives some examples of properties of
binary relations relevant for the notion of inference.

Monotony if A ⊃ B is a tautology andB p∼ C, thenA p∼ C
Right Weakening if A ⊃ B is a tautology andC p∼ A, thenC p∼ B
Reflexivity A p∼ A
And if A p∼ B andA p∼ C thenA p∼ B ∧ C
Or if A p∼ C andB p∼ C thenA ∨ B p∼ C

It turns out that these properties provide an alternative (albeit non-constructive) speci-
fication of the class of relations of the form̀T . Namely, we have the following theorem
[64].

Theorem 25 A binary relation onL is of the form`T if and only if it satisfies the five
properties given above.

Due to the property ofMonotony, inference relations̀T do not give rise to defeasible
arguments. To model defeasible arguments we need less conservative inference relations.
To this end, one may relax the requirement thatB must hold ineveryworld in whichA
holds. In commonsense reasoning, humans often differentiate between possible worlds,
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regarding some of them as more typical or normal than others.When making inferences
they often consider only those worlds that are most typical given the knowledge they have.
Thus, they might inferB from A if B holds in every most typical world in whichA holds
(and not in each such world).

Preferential models[64] provide a framework for this general approach. The key idea
is to use astrict partial order7, called apreference relation, to compare worlds with respect
to their “typicality”, with more typical worlds preferred to less typical ones. Given a strict
partial order≺ on a setW , an elementw ∈ W is≺-minimal if there is no elementw′ ∈ W
such thatw′ ≺ w.

In the following definition, we use again the term apossible-world structure. This time,
however, we use it to denote a slightly broader class of objects than sets of interpretations.

Definition 13 A generalpossible-world structure is a tuple〈W, v〉, whereW is a set of
worldsandv is a function mapping worlds to interpretations8. If A is a formula, we define

W (A) = {w ∈ W : v(w) |= A}.

A preferential modelis a tupleW = 〈W, v,≺〉, where〈W, v〉 is a general possible-world
structure and≺ is a strict partial order onW satisfying the followingsmoothnesscon-
dition: for every sentenceA and for everyw ∈ W (A), w is ≺-minimal or there is
w′ ∈ W (A) such thatw′ ≺ w andw′ is a≺-minimal element ofW (A).

The setW (A) gathers worlds in whichA holds. Minimal elements inW (A) can be
viewed as most typical states whereA holds. The smoothness condition guarantees that
for every worldw ∈ W (A) which is not most typical itself, there is a most typical state in
W (A) that is preferred tow.

Preferential models formalize the intuition of reasoning on the basis of most preferred
(typical) models only and allow us to specify the corresponding concept of inference.

Definition 14 If W is a preferential model (with the ordering≺), then the inference rela-
tion determined byW , p∼W , is defined as follows: forA, B ∈ L, A p∼W B if B holds in
every≺-minimal world in W (A).

We call inference relations of the formp∼W , whereW is a preferential model,prefer-
ential. In general, they do not satisfy the property ofMonotony.

Propositional circumscription is an example of this general method of defining infer-
ence relations. LetI stand for the set of all interpretations ofL. Furthermore, letP and
Z be two disjoint sets of propositional variables in the language. We note that the rela-
tion <P ;Z satisfies the smoothness condition. Thus,〈I, v, <P ;Z〉, wherev is the identity
function, is a preferential model. Moreover, it defines the same inference relation as does
circumscription.

Shoham’s preference logic [123] is another specializationof the preferential model
approach. As in circumscription, the set of worlds consistsof all interpretations ofL but
an arbitrary strict partial order satisfying the smoothness condition9 can be used.

7A binary relation that is irreflexive and transitive.
8Typically, W is assumed to be nonempty. This assumption is not necessary for our considerations here and

so we do not adopt it.
9In the original paper by Shoham, a stronger condition of well-foundedness was used.
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Preference logics are very close to preferential models. However, allowing multiple
worlds with the same interpretation (in other words, using general possible-world struc-
tures rather than possible-world structures) is essential. The resulting class of inference
relations is larger (we refer to [25] for an example).

Can preferential relations be characterized by means of meta properties? The answer
is yes but we need two more properties of binary relationsp∼ onL:

Left Logical Equivalence if A andB are logically equivalent andA p∼ C,
thenB p∼ C

Cautious Monotony if A p∼ B andA p∼ C, thenA ∧ B p∼ C

We have the following theorem [64].

Theorem 26 A binary relationp∼ on L is a preferential inference relation if and only if
it satisfies Left Logical Equivalence, Right Weakening, Reflexivity, And, Or and Cautious
Monotony.

We note that many other properties of binary relations were considered in an effort to
formalize the concept of nonmonotonic inference. Gabbay [44] asked about the weakest
set of conditions a binary relation should satisfy in order to be a nonmonotonic inference
relation. The result of his studies as well as of Makinson [79] was the notion of a cu-
mulative inference relation. A semantic characterizationof cumulative relations exists but
there are disputes whether cumulative relations are indeedthe right ones. Thus, we do not
discuss cumulative inference relations here.

Narrowing the class of orders in preferential models yieldssubclasses of preferential
relations. One of these subclasses is especially importantfor nonmonotonic reasoning. A
strict partial order≺ on a setP is rankedif there is a functionl from P to ordinals such
that for everyx, y ∈ P , x ≺ y if and only if l(x) < l(y).

Definition 15 A preferential model〈W , v,≺〉 is rankedif ≺ is ranked.

We will call inference relations defined by ranked modelsrational. It is easy to verify
that rational inference relations satisfy the property ofRational Monotony:

Rational Monotony if A ∧ B 6p∼ C andA 6p∼ ¬B, thenA 6p∼ C.

The converse is true, as well. We have the following theorem [68].

Theorem 27 An inference relation is rational if and only if it is preferential and satisfies
Rational Monotony.

1.5.2 Default Conditionals

Default conditionals are meant to model defeasible statements such asuniversity professors
normally give lectures. Formally, adefault conditionalis a syntactic expressionA p∼ B,
with an intuitive reading “ifA thennormally B”. We denote the operator constructing
default conditionals with the same symbolp∼ we used earlier for inference relations. While
it might be confusing, there are good reasons to do so and theywill become apparent as
we proceed. It is important, however, to keep in mind that in one case,p∼ stands for
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a constructor of syntactic (language) expressions, and in the other it stands for a binary
(inference) relation.

Given a setK of default conditionals, when is a default conditionalA p∼ B a conse-
quence ofK? When is a formulaA a consequence ofK? Somewhat disappointingly no
single commonly accepted answer has emerged. We will now review one of the approaches
proposed that received significant attention. It is based onthe notion of arational closure
developed in [67, 68] and closely related to the system Z [104].

Let K be a set of default conditionals. The set of all default conditionals implied byK
should be closed under some rules of inference for conditionals. For instance, we might
require that ifA andB are logically equivalent andA p∼ C belongs to a closure ofK,
B p∼ C belongs to the closure ofK, as well. This rule is nothing else butLeft Logical
Equivalence, except that now we view expressionsA p∼ B as default conditionals and not
as elements of an inference relation. In fact, modulo this correspondence (a conditional
A p∼ B versus an elementA p∼ B of an binary relation), several other rules we discussed
in the previous section could be argued as possible candidates to use when defining a
closure ofK.

Based on this observation, we postulate that a closure ofK should be a set of condi-
tionals that corresponds to an inference relation. The question is, which inference relation
extendingK should one adopt asthe closure ofK. If one is given a preferential model
whose inference relation extendsK, this inference relation might be considered as the clo-
sure ofK. This is not a satisfactory solution as, typically, all we have isK and we would
like to determine the closure on the basis ofK only. Another answer might be the inter-
section of all preferential relations extendingK. The resulting relation does not in general
satisfyRational monotony, a property that arguably allbona fidenonmonotonic inference
relations should satisfy. Ranked models determine inference relations that are preferen-
tial and, moreover, satisfyRational Monotony. However, the intersection of all rational
extensions ofK coincides with the intersection of all preferential extensions and so, this
approach collapses to the previous one.

If the closure ofK is not the intersection of all rational extensions, perhapsit is a
specific rational extension, if there is a natural way to define one. We will focus on this
possibility now. Lehmann and Magidor [68] introduce a partial ordering on rational exten-
sions of a set of conditional closures ofK. In the case when this order has a least element,
they call this element therational closureof K. They say thatA p∼ B is a rational conse-
quence ofK if A p∼ B belongs to the rational closure ofK. They say thatA is a rational
consequence ofK if the conditionaltrue p∼ A is in the rational closure ofK.

There are sets of conditionals that do not have the rational closure. However, [68] show
that in many cases, including the case whenK is finite, the rational closure exists. Rather
than discuss the ordering of rational extensions that underlies the definition of a rational
closure, we will now discuss an approach which characterizes it in many cases when it
exists.

A formulaA is exceptional forK, if true p∼ ¬A belongs to the preferential extension
of K, that is, if¬A is true in every minimal world of every preferential model ofK. A
default conditional is exceptional forK, if its antecedent is exceptional forK. By E(K)
we denote the set of all default conditionals inK that are exceptional forK.

GivenK, we define a sequence of subsets ofK as follows: C0 = K. If τ = η + 1
is a successor ordinal, we defineCτ = E(Cη). If τ is a limit ordinal, we defineCτ =
⋃

η<τ Cη.
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The rankr(A) of a formulaA is the least ordinalτ such thatA is not exceptional for
Cτ . If for every ordinalτ , A is exceptional forCτ , A has no rank.

A formula A is inconsistentwith K if for every preferential model ofK and every
world w in the model,w |= ¬A.

A set of conditionalsK is admissibleif all formulas that have no rank are inconsistent
for K. Admissible sets of default conditionals include all finitesets.

Theorem 28 If K is admissible, then its rational closurēK exists. A default conditional
A p∼ B ∈ K̄ if and only if A ∧ ¬B has no rank, or ifA and A ∧ ¬B have ranks and
r(A) < r(A ∧ ¬B).

1.5.3 Discussion

Properties of inference relations can reveal differences between nonmonotonic formalisms.
Earlier in this section, we showed how circumscription or default logic can be used to
specify inference relations. The relation determined by circumscription is a special case of
a preferential inference relation and so, satisfies all properties of preferential relations. The
situation is different for the inference relation defined bya set of defaults. Let us recall that
B can be inferred fromA with respect to a setD of defaults,A p∼D B, if B is in every
extension of the default theory(D, {A}).

The inference relationp∼D, whereD consists of normal defaults in general does not
satisfy the propertiesOr andCautious Monotony. For instance, letD = {A:C/C, B:C/C}.
Then we haveA p∼D C andB p∼D C, but notA ∨ B `D C. The reason, intuitively, is
that none of the defaults can be applied if only the disjunction of prerequisites is given.

An example for the violation of cumulativity due to Makinson[79] is given byD =
{>:A/A, A ∨ B:¬A/¬A}. We have> p∼D A and thus> p∼D A∨B, but notA∨B `D A.
The reason is that the default theory(D, {A∨B}) has a second extension containing¬A.

Contrary to normal defaults, supernormal defaults satisfybothCautious Monotonyand
Or [35], as they happen to be preferential.

Finally, we conclude this section with a major unresolved problem of nonmonotonic
reasoning. Nonmonotonicity can be achieved through fixed point constructions and this
approach leads to such formalisms as default and autoepistemic logics. On the other hand,
interesting nonmonotonic inference relations can be defined in terms of preferential mod-
els. What is missing is a clear link between the two approaches. An open question is: can
nonmonotonic inference relations defined by default logic (or other fixed point system) be
characterized in semantic terms along the lines of preferential models?

1.6 Further Issues and Conclusion

In this section we discuss the relationship between the major approaches we presented
earlier. We first relate default logic and autoepistemic logic (Sect. 1.6.1), then default
logic and circumscription (Sect. 1.6.2). Finally, we give pointers to some other approaches
which we could not present in more detail in this chapter (Sect. 1.6.3).
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1.6.1 Relating Default and Autoepistemic Logics

A basic pattern of nonmonotonic reasoning is: “in the absence of any information contra-
dicting B, infer B”. Normal defaults are designed specifically with this reasoning pattern
in mind: it is modeled by the normal default: B

B
. McDermott and Doyle [91] suggested

that in modal nonmonotonic systems this reasoning pattern should be represented by the
modal formula¬K¬B ⊃ B (or using a common abbreviationM for ¬K¬, which can
be read as “consistent” or “possible”:MB ⊃ B). Even though the modal nonmonotonic
logic of [91] was found to have counterintuitive propertiesand was abandoned as a knowl-
edge representation formalism, the connection between a default : B

B
and a modal formula

MB ⊃ B was an intriguing one and prompted extensive investigations. Since autoepis-
temic logic emerged in the mid 1980s as the modal nonmonotonic logic of choice, these
investigations focused on relating default and autoepistemic logics.

Building on the suggestion of McDermott and Doyle, Konolige[61] proposed to en-
code an arbitrary default

d =
A : B1, . . . , Bk

C

with a modal formula

T (d) = KA ∧ ¬K¬B1 ∧ . . . ∧ ¬K¬Bk ⊃ C,

and to translate a default theory∆ = (D, W ) into a modal theoryT (∆) = W∪{T (d) : d ∈
D}.

The translation seems to capture correctly the intuitive reading of a default: ifA is
known and allBi are possible (none is contradicted or inconsistent) then infer C. There is
a problem, though. Let us consider a default theory∆ = ({d}, ∅), where

d =
A : B

A
.

Konolige’s translation represents∆ as a modal theory

T (∆) = {KA ∧ ¬K¬B ⊃ A}.

Using methods we presented earlier in this chapter one can verify that ∆ has exactly one
extension,Cn(∅), while T (∆) hastwo expansions,CnS5(∅) andCnS5({A}). It follows
that Konolige’s translation does not yield a connection between the two logics that would
establish a one-to-one correspondence between extensionsand expansions. Still several
interesting properties hold.

First, as shown in [81], for prerequisite-free default theories, Konolige’s translation
does work! We have the following result.

Theorem 29 Let ∆ be a default theory such that each of its defaults is prerequisite-free.
Then, a propositional theoryE is an extension of∆ if and only if the belief set determined
byE ∩ L (cf. Proposition 14) is an expansion ofT (∆). Conversely, a modal theoryE′ is
an expansion ofT (∆) if and only if the modal-free part ofE′, E′ ∩ L, is an extension of
∆.
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Second, under Konolige’s translation, extensions are mapped to expansions (although,
as our example above shows — the converse fails in general).

Theorem 30 Let ∆ be a default theory. If a propositional theoryE is an extension of∆,
thenCnS5(E) is an expansion ofT (∆).

Despite providing evidence that the two logics are related,ultimately, Konolige’s trans-
lation does not properly match extensions with expansions.The reason boils down to a fun-
damental difference between extensions and expansions. Both extensions and expansions
consist only of formulas that are justified (“grounded”) in default and modal theories, re-
spectively. However, expansions allow for self-justifications while extensions do not. The
difference is well illustrated by the example we used before. The belief set determined
by {A} (cf. Proposition 14) is an expansion of the theory{KA ∧ ¬K¬B ⊃ A}. In
this expansion,A is justified through the formulaKA ∧ ¬K¬B ⊃ A by means of acir-
cular argument relying on believing inA (since there is no information contradictingB,
the second premise needed for the argument,¬K¬B, holds). Such self-justifications are
not sanctioned by extensions: in order to apply the defaultA : B

A
we must firstindepen-

dentlyderiveA. Indeed, one can verify that the theoryCn({A}) is not an extension of
({A : B

A
}, ∅).

This discussion implies that extensions and expansions capture different types of non-
monotonic reasoning. As some research suggests default logic is about the modality of
“knowing” (no self-supporting arguments) and autoepistemic logic is about the modality
of “believing” (self-supporting arguments allowed) [75, 122].

Two natural questions arise. Is there a default logic counterpart of expansions, and is
there an autoepistemic logic counterpart of extensions? The answer in each case is positive.
[34] developed a uniform treatment of default and autoepistemic logics exploiting some
basic operators on possible-world structures that can be associated with default and modal
theories. This algebraic approach (developed earlier in more abstract terms in [33]) endows
each logic with both expansions and extensions in such a way that they are perfectly aligned
under Konolige’s translation. Moreover, extensions of default theories and expansions
of modal theories defined by the algebraic approach of [34] coincide with the original
notions defined by Reiter and Moore, respectively, while expansions of default theories
and extensions of modal theories defined in [34] fill in the gaps to complete the picture.

A full discussion of the relation between default and autoepistemic logic is beyond the
scope of this chapter and we refer to [34] for details. Similarly, we only briefly note other
work attempting to explain the relationship between the twologics. Most efforts took as
the starting point the observation that to capture a defaultlogic within a modal system,
a different modal nonmonotonic logic or a different translation must be used. Konolige
related default logic to aversionof autoepistemic logic based on the notion of astrongly
grounded expansion[61]. Marek and Truszczýnski [82] proposed an alternative trans-
lation and represented extensions as expansions in a certain modal nonmonotonic logic
constructed following McDermott [90]. Truszczyński [128] found that the G̈odel transla-
tion of intuitionistic logic to modal logic S4 could be used to translate the default logic
into a nonmonotonic modal logic S4 (in fact, he showed that several modal nonmonotonic
logics could be used in place of nonmonotonic S4).

Gottlob [52] returned to the original problem of relating default and autoepistemic log-
ics with their original semantics. He described a mapping translating default theories into
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modal ones so that extensions correspond precisely to expansions. This translation is not
modular. The autoepistemic representation of a default theory depends on the whole the-
ory and cannot be obtained as the union of independent translations of individual defaults.
Thus, the approach of Gottlob does not provide an autoepistemic reading of an individual
default. In fact, in the same paper Gottlob proved that a modular translation from default
logic with the semantics of extensions to autoepistemic logic with the semantics of ex-
pansions does not exist. In conclusion, there isno modal interpretation of a default under
whichextensionswould correspond toexpansions.

1.6.2 Relating Default Logic and Circumscription

The relationships between default logic and circumscription as well as between autoepis-
temic logic and circumscription have been investigated by anumber of researchers [42,
43, 58, 72, 62]. Imielinski [58] points out that even normal default rules with prerequi-
sites cannot not be translated modularly into circumscription. This argument applies also
to autoepistemic logic and thus circumscription cannot modularly capture autoepistemic
reasoning [96].

On the other hand, circumscription is closely related to prerequisite-free normal de-
faults. For example, it is possible to capture minimal models of a set of formulas using
such rules. The idea is easy to explain in the propositional case. Consider a set of formulas
T and setsP andZ of minimized and varied atoms (0-ary predicates), respectively, and let
R be the set of fixed atoms (those not inP or Z). Now≤P ;Z-minimal models ofT can be
captured by the default theory(MIN(P ) ∪ FIX(R), T ) where the set of defaults consists
of

MIN(P ) = {
> : ¬A

¬A
| A ∈ P}

FIX(R) = {
> : ¬A

¬A
| A ∈ R} ∪ {

> : A

A
| A ∈ R}

Now a formulaF is true in every≤P ;Z-minimal model ofT if and only if F is in every
extension of the default theory(MIN(P ) ∪ FIX(R), T ). The idea here is that defaults
MIN(P ) minimize atoms inP and defaultsFIX(R) fix atoms inR by minimizing each
atom and its complement.

The same approach can be used for autoepistemic logic as prerequisite-free default
theories can be translated to autoepistemic logic as explained in Section 1.6.1. However,
capturing first-order circumscription is non-trivial and the results depend on the treatment
of open defaults (or quantification into the scope ofK operators in the case of autoepis-
temic logic). For example, Etherington [42] reports results on capturing circumscription
using default logic in the first-order case but without any fixed predicates and with a finite,
fixed domain. Konolige [62] shows how to encode circumscription in the case of non-finite
domains using a variant of autoepistemic logic which allowsquantification into the scope
of K operators.

1.6.3 Further Approaches

Several other formalizations of nonmonotonic reasoning have been proposed in the liter-
ature. Here we give a few references to those we consider mostrelevant but could not
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handle in more detail.

• Possibilistic logics [38] assign degrees of necessity and possibility to sentences.
These degrees express the extent to which these sentences are believed to be nec-
essarily or possibly true, respectively. One of the main advantages of this approach
is that it leads to a notion of graded inconsistency which allows non-trivial deduc-
tions to be performed from inconsistent possibilistic knowledge bases. The resulting
consequence relation is nonmonotonic and default rules canbe conveniently repre-
sented in this approach [10].

• Defeasible logic, as proposed by Nute [101] and further developed by Antoniou
and colleagues [4, 3], is an approach to nonmonotonic reasoning based on strict
and defeasible rules as well as defeaters. The latter specify exceptions to defeasible
rules. A preference relation among defeasible rules is usedto break ties whenever
possible. An advantage of defeasible logic is its low complexity: inferences can be
computed very efficiently. On the other hand, some arguably intuitive conclusions
are not captured. The relationship between defeasible logic and prioritized logic
programs under well-founded semantics is discussed in [24].

• Inheritance networks are directed graphs whose nodes represent propositions and
a directed (possibly negated) link between two nodesA andB stands for“ As are
normally (not)Bs” (some types of networks also distinguish between strict and
defeasible links). The main goal of approaches in this area is to capture the idea
that more specific information should win in case of a conflict. Several notions
of specificity have been formalized, and corresponding notions of inference were
developed. Reasoning based on inheritance networks is nonmonotonic since new,
possibly more specific links can lead to the retraction of former conclusions. [56]
gives a good overview.

• Several authors have proposed approaches based on ranked knowledge bases, that
is, sets of classical formulas together with a total preorder on the formulas [21, 9].
The preorder represents preferences reflecting the willingness to stick to a formula in
case of conflict: if two formulasA andB lead to inconsistency, then the strictly less
preferred formula is given up. If they are equally preferred, then different preferred
maximal consistent subsets (preferred subtheories in the terminology of [21]) of the
formulas will be generated. There are different ways to define the preferred subthe-
ories. Brewka [21] uses a criterion based on set inclusion, Benferhat and colleagues
[9] investigate a cardinality based approach.

• When considering knowledge-based agents it is natural to assume that the agent’s be-
liefs are exactly those beliefs which follow from the assumption that the knowledge-
base isall that is believed. Levesque was the first to capture this notion in his logic
of only-knowing[69]. The main advantage of this approach is that beliefs canbe
analyzed in terms of a modal logic without requiring additional meta-logical notions
like fixpoints and the like. The logic uses two modal operators, K for belief and
O for only knowing. Levesque showed that his logic captures autoepistemic logic.
In [65] the approach was generalized to capture default logic as well. [66] presents
a sound and complete axiomatization for the propositional case. Multi-agent only
knowing is explored in [53].
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• Formal argument systems (see for instance [76, 124, 106, 39,20, 129, 1, 130, 12])
model the way agents reason on the basis of arguments. In someapproaches argu-
ments have internal structure, in others they remain abstract entities whose structure
is not analyzed further. In each case a defeat relation amongarguments plays a
central role in determining acceptable arguments and acceptable beliefs. The ap-
proaches are too numerous to be discussed here in more detail. We refer the reader
to the excellent overview articles [29] and [108].

With the above references to further work we conclude this overview chapter on formaliza-
tions of general nonmonotonic reasoning. As we said in the introduction, our aim was not
to give a comprehensive overview of all the work that has beendone in the area. We de-
cided to focus on the most influential approaches, thus providing the necessary background
for several of the other chapters of this handbook. Indeed, the reader will notice that the
topic of this chapter pops up again at various places in this book — with a different, more
specialized focus. Examples are the chapters on Answer Sets(Chapter 7), Model-based
Problem Solving (Chapter 10), and the various approaches toreasoning about action and
causality (Chapters 16 – 19).
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new approach.Artificial Intelligence, 67(1):113–141, 1994.

[123] Yoav Shoham. A semantical approach to nonmonotic logics. InProceedings of the
Symposium on Logic in Computer Science, LICS-87, pages 275–279. IEEE Com-
puter Society, 1987.

[124] Guillermo Ricardo Simari and Ronald Prescott Loui. A mathematical treatment of
defeasible reasoning and its implementation.Artificial Intelligence, 53(2-3):125–
157, 1992.

[125] Robert Stalnaker. A note on nonmonotonic modal logic.Artificial Intelligence,
64(2):183–196, 1993.

[126] Jonathan Stillman. It’s not my default: the complexity of membership problems in
restricted propositional default logics. InProceedings of the 9th National Confer-
ence on Artificial Intelligence, pages 571–578, Boston, Massachusetts, USA, July
1990. MIT Press.

[127] Jonathan Stillman. The complexity of propositional default logics. InProceedings
of the 10th National Conference on Artificial Intelligence, pages 794–800, San Jose,
California, USA, July 1992. MIT Press.
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