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Chapter 1

Nonmonotonic Reasoning

Gerhard Brewka, llkka Niemel a,
Mirostaw Truszczynski

1.1 Introduction

Classical logic isnonotonicin the following sense: whenever a sententés a logical
consequence of a set of senten€eshenA is also a consequence of an arbitrary superset
of T. In other words, adding information never invalidates aoyausions.

Commonsense reasoning is different. We often draw plaaisibhclusions based on
the assumption that the world in which we function and abdhitivwe reason isormal
andas expectedThis is far from being irrational. To the contrary, it is thest we can
do in situations in which we have only incomplete informatidHiowever, as unexpected
as it may be, it can happen that our normality assumptioms dut to be wrong. New
information can show that the situation actually is abndrimaome respect. In this case
we may have to revise our conclusions.

For example, let us assume that Professor Jones likes toghgued espresso after
lunch in a campus céf You need to talk to her about a grant proposal. It is abdipim
and, under normal circumstances, Professor Jones stidier tdaily routine. Thus, you
draw a plausible conclusion that she is presently enjoyergfévorite drink. You decide
to go to the ca# and meet her there. As you get near the student center, Wieemfe
is located, you see people streaming out of the building. Qfnthem tells you about
the fire alarm that just went off. The new piece of informatiovalidates the normality
assumption and so the conclusion about the present loaat®rofessor Jones, too.

Such reasoning, where additional information may invaéideonclusions, is called
nonmonotonic It has been a focus of extensive studies by the knowledgeseptation
community since the early eighties of the last century. Titisrest was fueled by several
fundamental challenges facing knowledge representatioh as modeling and reasoning
about rules with exceptions defaults and solving thédrameproblem.
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Rules with exceptions

Most rules we use in commonsense reasoning —uUikigersity professors teachirds fly,
kids like ice-creamJapanese cars are reliable- have exceptions. The rules describe what
is normally the case, but they do not necessarily hold witlke@aeption. This is obviously
in contrast with universally quantified formulas in first erdogic. The sentence

Va (prof (x) D teaches(x))

simply excludes the possibility of non-teaching univergitofessors and thus cannot be
used to represent rules with exceptions. Of course, we dae the sentence to

Va ((prof (z) A —mabnormal(x)) D teaches(z)).

However, to apply this rule, say to Professor Jones, we re&ddw whether Professor
Jones is exceptional (for instance, professors who arertheg@at Chairs do not teach).
Even if we assume that the unary predicateormal(.) can be defined precisely, which
is rarely the case in practice as the list of possible exonptis hard — if not impossible

— to complete, we will most often lack information to deriveat Professor Jones is not
exceptional. We want to apply the rule even if all we know &kl Jones is that she is a
professor at a university. If we later learn she is a departr@@air — well, then we have

to retract our former conclusion about her teaching clasSesh scenarios can only be
handled with a nonmonotonic reasoning formalism.

The frame problem

To express effects of actions and reason about changes imatthe they incur, one has
to indicate under what circumstances a proposition whasgh tralue may vary, #uent
holds. One of the most elegant formalisms to represent &anggic, situation calculus
[89, 88, 112], uses situations corresponding to sequerfcastions to achieve this. For
instance, the fact that Fred is in the kitchen after walkhngyé, starting in initial situation
So, is represented as

holds(in(Fred, Kitchen), do(walk(Fred, Kitchen), Sp)).

The predicatéiolds allows us to state that a fluent, here Fred, Kitchen), holds in a
particular situation. The expressiamlk(Fred, Kitchen) is an action, and the expression
do(walk(Fred, Kitchen), Sp) is the situation after Fred walked to the kitchen, while in
situationSj.

In situation calculus, effects of actions can easily be dlesd. It is more problematic,
however, to describe what doeet change when an event occurs. For instance, the color
of the kitchen, the position of chairs, and many other thiregeain unaffected by Fred
walking to the kitchen. The frame problem asks how to repretiee large amount of
non-changes when reasoning about action.

One possibility is to use a persistence rule suchndmat holds in a situation typically
holds in the situation after an action was performed, uniessntradicts the description
of the effects of the actiohis rule is obviously nonmonotonic. Just adding such aiper
tence rule to an action theory is not nearly enough to soleblpms arising in reasoning
about action (see Chapters 16 — 19 in this volume). Howeles,an important compo-
nent of a solution, and so the frame problem has provided amrapetus to research of
nonmonotonic reasoning.
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About this chapter

Handling rules with exceptions and representing the framoblpm are by no means the
only applications that have been driving research in norotwric reasoning. Belief revi-
sion, abstract nonmonotonic inference relations, reagonith conditionals, semantics of
logic programs with negation, and applications of nonmoniat formalisms as database
query languages and specification languages for searcleprstall provided motivation
and new directions for research in nonmonotonic reasoning.

One of the first papers explicitly dealing with the issue afimenotonic reasoning was
a paper by Erik Sandewall [115] written in 1972 at a time whemas sometimes argued
that logic is irrelevant for Al since it is not capable of repenting nonmonotonicity in
the consequence relation. Sandewall argued that it is thgessible, with a moderate
modification of conventional (first-order) logic, to accomaate this requirement. The
basic idea in the 1972 paper is to allow rules of the form

A andUnless B = C

where, informallyC' can be inferred ifA was inferred and3 cannot be inferred. The 1972
paper discusses consequences of the proposed approadh panticular it identifies that
it leads to the possibility of multiple extensions. At abthg same time Hewitt published
his work on Planner [55], where he proposed usingitheot operator for referring to
failed inference.

In this chapter we give a short introduction to the field. Giits present scope, we do
not aim at a comprehensive survey. Instead, we will desthifee of the major formalisms
in more detail: default logic in Section 1.2, autoepistelogic in Section 1.3, and circum-
scription in Section 1.4. We will then discuss connectioasMeen these formalisms. It is
encouraging and esthetically satisfying that despitesdéffit origins and motivations, one
can find common themes.

We chose default logic, autoepistemic logic, and circuipsion for the more detailed
presentation since they are prominent and typical reptatess of two orthogonal ap-
proaches: fixed point logics and model preference logice. fotmer are based onfixed
point operatorthat is used to generate — possibly multiple — sets of acbéptaeliefs
(called extensions or expansions), taking into accoumateconsistency conditions. Non-
monotonicity in these approaches is achieved since whatrisistent changes when new
information is added. Model preference logics, on the otrerd, are concerned with
nonmonotonic inference relations rather than formatiobeifef sets. They select some
preferredor normal models out of the set of all models and define nonmonotonar-nf
ence with respect to these preferred (normal) models onéye Honmonotonicity arises
since adding new information changes the set of preferredielao models that were not
preferred before may become preferred once we learn nes: fact

Preference logics and their generalizations are importahbnly as a broad frame-
work for circumscription. They are also fundamental fordé®g of abstract nonmonotonic
inference relations. In Section 1.5, we discuss this lineséarch in more detail and cover
such related topics as reasoning about conditionals nat@osure, and system Z.

In the last section of the chapter, we discuss the relatiprisétween the major ap-
proaches, and present an overview of some other reseamttiolirs in nonmonotonic
reasoning. By necessity we will be brief. For a more extensizatment of nonmonotonic



4 1.

reasoning we refer the reader to the books (in order of appeej [43, 11, 78, 85, 25, 2,
16, 17, 80].

1.2 Default Logic

Default reasoning is common. It appears when we apply theediWorld Assumption
to derive negative information, when we use inference rtlas admit exceptions (rules
that hold under theaormalityassumption), and when we use frame axioms to reason about
effects of actions. Ray Reiter, who provided one of the mobust formalizations of
default reasoning, argued that understanding defaulonéag is of foremost importance
for knowledge representation and reasoning. AccordingeiteRdefaults are meta-rules
of the form “in the absence of any information to the contragysume ...” and default
reasoning consists of applying them [111].

Usual inference rules sanction the derivation of a formuiemever some other formu-
las are derived. In contrast, Reiter’s defaults requiredaitimnal consistency condition to
hold. For instance, a default ruf@rmally, a university professor teachissepresented in

Reiter’s default notation as
prof (z) : teaches(x)

teaches(x)

It states that ifprof (J) is given or derived for a particular ground teri(which may
represent Prof. Jones, for instance) andthes(J) is consistent (there is no information
that —teaches(J) holds), thenteaches(J) can be derived “by default”. The key ques-
tion of course is: consistent with what? Intuitivelyaches(.JJ) has to be consistent with
the whole set of formulas which one can “reasonably” acceget on the available in-
formation. Reiter’s far-reaching contribution is that hade this intuition formal. In his
approach, depending on the choice of applied defaultgrdift sets of formulas may be
taken as providing context for deciding consistency. Reitdls these different seexten-
sions

One can use extensions to defirgkapticalinference relation (a formula is skeptically
entailed by a default theory if it belongs &l of its extensions), or aredulousinference
relation (a formula is credulously entailed by a defaulbtlyef it belongs toat least oneof
its extensions). In many applications such as diagnosisnag and, more generally in all
the situations where defaults model constraints, the sidas themselves are of interest
as they represent different solutions to a problem (see €h&@pon Answer Sets in this
volume).

1.2.1 Basic Definitions and Properties

In default logic, what we are certain about is representethbgns of sentences of first-
order logic (formulas without free variables). Defeasibiference rules which specify
patterns of reasoning that normally hold are representel@fasilts. Formally, a defaudt

is an expression

AiBh...,Bn
c

whereA, B;, andC are formulas in first-order logic. In this notatiaa,is theprerequisite
By, ..., B, areconsistency conditionsr justifications andC' is theconsequentWe de-

(1.1)
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noteA, {Bj, ..., B,} andC by pre(d), just(d), andcons(d), respectively. To save space,
we will also write a default (1.1) ad: By, ..., B,/C.

Definition 1 Adefault theorys a pair (D, W), wherelV is a set of sentences in first-order
logic and D is a set of defaults.

A default isclosedif its prerequisite, justifications, and consequent ar¢éesaes. Oth-
erwise, it isopen A default theory isclosedif all its defaults are closed; otherwise, it is
open A default theory determines its Herbrand universe. We iiltrpret open defaults
as schemata representing all of their ground instancesrefdre, open default theories
are just a shorthand notation for their closed countergamtisso, in this chapter, the term
default theoryalways stands for eloseddefault theory.

Before we define extensions of a default the@By W) formally, let us discuss prop-
erties we expect an extensiéhof (D, W) to satisfy.

1. SincelV represents certain knowledge, we wélntto be contained i, that is, we
require thatV C E.

2. We wantF to be deductively closed in the sense of classical logid,ithave want
Cn(F) = F to hold, where= is the classical logical consequence relation and
Cn(F) = {A| E = A} denotes the set of logical consequences of a set of formulas
E.

3. We use defaults to expand our knowledge. THiishould beclosedunder defaults
in D: whenever the prerequisite of a defatdile D is in £ and all its justifications
are consistent wittlZ, the consequent of the default must beiin

These three requirements do not yet specify the right canafean extension. We
still need some condition ajroundednessf extensions: each formula in an extension
needs sufficient reason to be included in the extension. nMlify with respect to the
requirements (1)—(3) does not do the job. Bét= P andD = {T : a/b}. ThenCn({—-a})
is a minimal set satisfying the three properties, but therhéD, W) gives no support for
—a. IndeedW = () and the only default in the theory cannot be used to derivéhamy
else but.

The problem is how to capture the inference-rule interpigiave ascribe to defaults.
It is not a simple matter to adjust this as defaults have wesf two different types and
this has to be taken into account. Reiter’'s proposal res@noobservation that given a
setS of formulas to use when testing consistency of justificatidhere is ainiqueleast
theory, sayl'(.S), containingl¥, closed under classical provability and also (in a certain
sense determined k) under defaults. Reiter argued that for a theSryo be grounded
n (D, W), S must be precisely whdtD, W) implies, given thatS is used for testing the
consistency of justifications, and used this property tongedixtensions [111].

Definition 2 (Default logic extension)
Let (D, W) be a default theory. The operatdY assigns to every set of formulas the
smallest set/ of formulas such that:

1We note, however, that Reiter treats open defaults diffgrand uses a more complicated method to define
extensions for them. A theory of open default theories wagldped by [73]. Some problems with the existing
treatments of open defaults are discussed in [5].
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2. Cn(U) =1,
3. ifA:By,...,B,/C e D,UEA,S I~ -B;,1 <i<n,thenC e U.

A setE of formulas is arextensiorof (D, W) if and only if E = T'(E), that is,E is a fixed
point ofT".

One can show that such a least 8eexists so the operatdr is well defined. It is
also not difficult to see that extensions defined as fixed pa@ifit satisfy the requirements
1))

In addition, the way the operatdr is defined also guarantees that extensions are
grounded in(D, ). Indeed'(S) can be characterized as the set of all formulas that can
be derived fromi¥ by means of classical derivability and by using those défauhose
justifications are each consistent wihas additionaktandardinference rules (once every
justification in a defaultl turns out to be consistent witfi, the defaultd starts to func-
tion as the inference rulgre(d)/cons(d), other defaults are ignored). This observation is
behind a quasi-inductive characterization of extensialss, due to Reiter [111].

Theorem 1 Let (D, W) be a default theory and a set of formulas. Let

E, = W, andfori>0
EZ'+1 CII(EZ) U {C ‘ A:Bl, .. ,Bn/C < D,El ): A,S l}é ﬁ.Bj,l S] < n}

ThenI'(S) = (U;2, E;. Moreover, a seF of formulas is an extension ¢D, W) if and
only if E = s, Ei.

The appearance df in the definition ofE; . ; is what renders this alternative definition
of extensions non-constructive. It is, however, quite ulseReiter [111] used Theorem 1
to show that every extension of a default the0Fy, 1) can be represented as the logical
closure ofi¥ and the consequents of a subset of defaults ffam

Let E be a set of formulas. A defaultis generatingfor E if £ | pre(d) and, for
everyB € just(d), E = —B. If D is a set of defaults, we writé’D(D, E) for the set of
defaults inD that are generating faf.

Theorem 2 (Generating Defaults)Let E' be an extension of a default theof®, W).
ThenE = Cn(W U {cons(d) | d € GD(D, E)}).

This result is fundamental for algorithms to compute extars We will come back

to this issue later. For now, we will restrict ourselves tea Examples. Let

Dy = {prof (x):teaches(x)lteaches(x)}

Wi = {prof (J)}.
We recall that we interpret an open default as the set of dsrgt instantiations. Since
there is only one constanf]) in the theory, the correspondintpseddefault theory is

Dy = {prof (J):teaches(J)lteaches(J)}

Wi = {prof (J)}.
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By Theorem 2 an extension is the deductive closuié@’aind some of the available default
consequents. Hence, there are only two candidates for ansah here, namely; =
Cn({prof (J)}) and Sz = Cn({prof(J), teaches(J)}). We can now use Theorem 1 to
computel'(Sy). Clearly, By = Cn(W;). Sinceteaches(J) is consistent withS; and
Ey = prof (J), E1 = Cu({prof (J), teaches(J)}). Moreover, for every > 2, E; = Ej.
Thus,T'(S1) = Cn({prof (J), teaches(J)}). Sinceteaches(J) ¢ Si, S1 # T'(S1) and
s0, .5 is not an extension ofD, W1) (nor of (D7, W1)). On the other hand, the same
argument shows tha@t(Ss) = Cn({prof (J), teaches(J)}). Thus,Sy = I'(S2), that is, S

is an extension ofD,, W) (and also D7, W1)).

Now let us consider a situation when Profes$as not a typical professor.

Dy =Dy
Wy = {prof (J), chair(J),Va.(chair(x) D —teaches(x))}.

As before, there are two candidates for extensions, natigly= Cn(WW2) and Sy =

Cn(WaU{teaches(J)}). This timeSs is inconsistent and one can compute, using Theorem

1, thatT'(S2) = Cn(W2). Thus,S; is not a fixed point of" and so not an extension. On

the other hand[’(S;) = Cn(W3) and soS; is an extension of D2, W5). Consequently,

this default theory supports the inference that Profegsdwes not teach (as it should).
Finally, we will consider what happens if the universallyagtified formula fromit/,

is replaced by a corresponding default rule:

= {prof (x ) teaches(z)lteaches(x), chair(x):—teaches(x)/—teaches(x)}
W3 = {prof (J), chair(J)}.

The corresponding closed default theory has two defapits:(.J):teaches(J)/teaches(J)
and chair(J):—teaches(J)I—teaches(J). Thus, there are now four candidates for exten-
sions:

Cn({prof (J), chair(J)})
Cun({prof (J), chair(J), teaches(J)})
Cu({prof (J), chair(J), ~teaches(J)})
Cu({prof (J), chair(J), teaches(J), ~teaches(J)}).

In each case, one can compute the value of the opdraaod check the condition for an
extension. In this example, the second and third theorippdrato be extensions. Since
the theory offers no information whether Professor J is &cglprofessor or a typical chair
(she cannot be both as this would lead to a contradiction)getéwo extensions. In one
of them Professor J is a typical professor and so teachelsginther one she is a typical
chair and so, does not teach.
Default theories can have an arbitrary number of extensionkiding having no ex-

tensions at all. We have seen examples of default theoritsome and two extensions
above. A simple default theory without an extension is

({T:=ala}, D).

If a deductively closed set of formulas does not contaim, thenS is not an extension
since the default has not been applied even theugis consistent witts. In other words,
I'(S) will contain @ and thus'(S) # S. On the other hand, if containsa, thenI'(S)
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produces a set not containingmore precisely: the set of all tautologies) since the defau
is inapplicable with respect t8. Again S is not an extension.
Theorem 2 has some immediate consequences.

Corollary 3 Let(D, W) be a default theory.

1. If W is inconsistent, the(D, W) has a single extension, which consists of all for-
mulas in the language.

2. If W is consistent and every default in has at least one justification, then every
extension of D, W) is consistent.

We noted that the minimality with respect to the requireragi)—(3) we discussed
prior to the formal definition of extensions does not guagangroundedness. It turns
out that the type of groundedness satisfied by extensiongensheir minimality and,
consequently, implies that they form an antichain [111].

Theorem 4 Let (D, W) be a default theory. IE is an extension of D, W) and E’ is a
theory closed under classical consequence relation anaultsfin D such thatt’ C FE,
thenE’ = E. In particular, if E and E’ are extensions of D, W) and E C E’, then
E=F.

1.2.2 Computational Properties

The key reasoning problems for default logic are decidiogptical and credulous infer-
enceand finding extensions. For first-order default logic thesbdlems are not even semi-
decidable [111]. This is different from classical first ardtegic which is semi-decidable.
Hence, automated reasoning systems for first-order ddéayiit cannot provide a similar
level of completeness as classical theorem provers: a fargan be a (nonmonotonic)
consequence of a default theory but no algorithm is ableteb#sh this. This can be com-
pared to first-order theorem proving where it can be guaeatiteat for each valid formula
a proof is eventually found.

Even in the propositional case extensions of a default thaxa infinite sets of formu-
las. In order to handle them computationally we need charaetions in terms of for-
mulas that appear i6tD, W). We will now present two such characterizations which play
an important role in clarifying computational propertidsiefault logic and in developing
algorithms for default reasoning.

We will write Mon(D) for the set of standard inference rules obtained by dropping
justifications from defaults ib:

Mon(D) = { pre(d) | ;¢ D}.

cons(d)

We defineCnyon(p)(.) to be the consequence operator induced by the classicad-cons
quence relation and the rulesNion (D). Thatis, ifiV is a set of sentenceSnyon(p) (W)

is the closure o/ with respect to classical logical consequence and the iles D)

(the least set of formulas containiflg and closed under the classical consequence relation
and the rules iMon(D)).
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The first characterization is based on the observation tttahsions can be described
in terms of their generating defaults (Theorem 2). The tetain be found in [85, 114, 5].
We will only state the main result. The idea is to project taguirements we impose on
an extension to a set of its generating defaults. Thus, af ggtrerating defaults should
be grounded iV, which means that for every default in this set the preregughould
be derivable (in a certain specific sense) frim Second, the set of generating defaults
should contairall defaults that apply.

Theorem 5 (Extensions in Terms of Generating Defaults)A setFE of formulas is an ex-
tension of a default theoryD, W) if and only if there is a seD’ C D such thatEl =
Cn(W U {cons(d) | d € D'}) and

1. foreveryd € D', pre(d) € Cnnion(pry (W),

2. foralld € D: d € D' ifand only if pre(d) € Cn(W U {cons(d) | d € D'}) and
for all B € just(d), =B & Cn(W U {cons(d) | d € D'}).

The second characterization was introduced in [98] anddsded on justifications.
The idea is that default rules are inference rules guardédagnsistency conditions given
by the justifications. Hence, it is the set of justificationattdetermines the extension and
the rest is just a monotonic derivation.

We denote byust(D) the set of all justifications in the set of defaulds For a setS
of formulas we define

Mon(D, S) = {pre(d)/cons(d) | d € D, just(d) C S}

as the set of monotonic inference rules enabled' by set of justifications is calletlll
with respect to the default theory if it consists of the ffissitions which are consistent
with the consequences of the monotonic inference ruleslesdly the set.

Definition 3 (Full Sets) For a default theory( D, W), a set of justifications' C just(D)
is (D, W)-full if the following condition holds: for ever € just(D), B € S if and only
if =B ¢ CDMon(D.,S)(W)-

For each full set there is a corresponding extension andafoh extension a full set that
induces it.

Theorem 6 (Extensions in Terms of Full Sets)Let (D, W) a default theory.
1. If S C just(D) is (D, W)-full, thenCnyjon(p,s) (W) is an extension of D, ).
2. If E'is an extension of D, W), thenS = {B € just(D) | =B ¢ E} is (D, W)-full
andFE = CnMon(D,S)(W)-
Example 1 Consider the default theoryD3, W3), where

Ds = A{prof(J):teaches(J)lteaches(J), chair(J):—~teaches(J)I~teaches(J)}
Ws = A{prof(J), chair(J)}.
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The possibld D3, W3)-full sets are the four subsets ffeaches(J), —teaches(J)}. Itis
easy to verify that from these onfyeaches(J)} and {—teaches(J)} satisfy the fullness
condition given in Definition 3. For instance, fétr= {—teaches(J)}

chair(J) )
—teaches(J)

and Cnnion(ps,s)(W3) = Cn({prof (J), chair(J), ~teaches(.J)}). As required we have
——teaches(J) & Ciivion(psy,s)(W3) and—teaches(.J) € Chnion(p,,s)(W3) holds.

MOH(Dg, S) = {

The finitary characterization of extensions in Theoremsd@reveal important com-
putational properties of default logic. A direct conseqeeis that propositional default
reasoning iglecidableand can be implemented polynomial spaceThis is because the
characterizations are based on classical reasoning whibécidable in polynomial space
in the propositional case.

In order to contrast default logic more sharply to classiegic we consider a (hypo-
thetical) setting where we have a highly efficient theorewwver for propositional logic
and, hence, are able to decide classical consequencestaffd@enulasi¥ and inference
rules R, that isCng (W), efficiently. Theorems 5 and 6 suggest that even in thisnegtti
constructing an extension of a propositional default theovolves a non-trivial search
problem of finding a set of generating defaults or a full seiwidver, the characterizations
imply an upper bound on the computational complexity of psifional default reasoning
showing that it is on the second level of the polynomial higge. It turns out this is
a tight upper bound as deciding extension existence andlonwesiinference are actually
>¥P-complete problems and sceptical inferencElf-complete [51, 127].

The completeness results imply that (propositional) defaasoning is strictly harder
than classical (propositional) reasoning unless the mohjal hierarchy collapses which
is regarded unlikely. This means that there are two orthagsources of complexity in
default reasoning. One source originates from classigat lon top of which default logic
is built. The other source is related to nonmonotonicity efedlt rules. These sources are
independent of each other because even if we assume thaevablarto decide classical
consequence in one computation step, deciding a propusitiefault reasoning problem
remains on the difficulty level of alNP/co-NP-complete problem and no polynomial
time algorithms are known even under this assumption. Heheehighly unlikely that
general default logic can be implemented on top of a claktiearem prover with only a
polynomial overhead.

In order to achieve tractable reasoning it is not enoughntit khe syntactic form of
allowed formulas because this affects only one source ofptexity but also the way
default rules interact needs to restricted. This is nicelndnstrated by complexity results
on restricted subclasses of default theories [60, 126, 8]. 18@n interesting question is
to find suitable trade-offs between expressive power andoatational complexity. For
example, while general default logic has higher computaficomplexity, it enables very
compact representation of knowledge which is exponenti@bre succinct than when
using classical logic [50].

A number of decision methods for general (propositionatadk reasoning have been
developed. Methods based on the characterization of eéateni terms of generating

2For an introduction to computational complexity theory &mdbasic definitions and results on polynomial
hierarchy, see for example [46, 103].
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defaults (Theorem 2) can be found, for example in [85, 5, B0%,and in terms of full sets
(Theorem 6) in [98]. There are approaches where defaulbnéag is reduced into another
problem like a truth maintenance problem [59] or a constrsatisfaction problem [8].
An interesting approach to provide proof theory for defaaisoning based on sequent
calculus was proposed by [18, 19]. More details on autorgatefault reasoning can be
found also in [36].

Notice that for general default reasoning it seems inféagib develop a fully goal-
directed procedure, that is, a procedure which would exaroimy those parts of the de-
fault theory which are somehow syntactically relevant tavery query. This is because
extensions are defined with a global condition on the whaemhrequiring that each ap-
plicable default rule should be applied. There are theawiés no extensions and in the
worst case it is necessary to examine every default ruledardo guarantee the existence
of an extension. For achieving a goal-directed decisiorhotktone can consider a weaker
notion of extensions or syntactically restricted subdasd default theories such as normal
defaults (see below) [117, 118].

1.2.3 Normal Default Theories

By restricting the form of defaults one obtains special s#asof default theories. One of
the most important of them is the classwirmaldefault theories, where all defaults are of
the form

A:B

5

The distinguishing feature of normal default theories iattthey are guaranteed to

have extensions and extensions are determined by enuomsraif the set of defaults.
Let (D, W) be a normal default theory (as always, assumed to be closedeaD =
{dy,ds,...}.

1. We defineEy = Cn(W);

2. Let us assumé’; has been defined. We select the first defdult A:B/B in the
enumeration such thd; = A, E; -~ B andE; [~ —B and defineZ;,; = Cn(E; U
{B}). If no such default exists, we s, = F;.

Theorem 7 Let (D, W) be a normal default theory. Then, there is an enumerafios
{d1,ds, ...} such thatE = |J;=, E; is an extension ofD, W) (whereE; are sets con-
structed above). Furthermore, for every extenstoof (D, W) there is an enumeration,
which yields set#; such thattl = J;-, E;.

Theorem 7 not only establishes the existence of extensiomsrmal default theories
but it also allows us to derive several properties of extamsi We gather them in the
following theorem.

Theorem 8 Let (D, W) be a normal default theory. Then,

1. if WU {cons(d)|d € D} is consistent, the@n (W U {cons(d)|d € D}) is a unique
extension of D, W);
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2. if £y and E, are extensions afD, W) and E; # Es, thenE; U E, is inconsistent;

3. if E is an extension ofD, W), then for every seD’ of normal defaults, the normal
default theory D U D', W) has an extensio&’ such thatt C E’.

The last property is often called treemi-monotonicityf normal default logic. It
asserts that adding normal defaults to a normal defaultryh@oes not destroy existing
extensions but only possibly augments them.

A default rule of the form

TZBl,...,Bn
C

is calledprerequisite-free Default theories possessing only prerequisite-free abada-
faults are calledupernormal They are closely related to a formalism for nonmonotonic
reasoning proposed by Poole [107] and so, are sometimesi@alble defaults We will

not discuss Poole’s formalism here but only point out thatdbnnection is provided by
the following property of supernormal default theories.

Theorem 9 Let (D, W) be a supernormal default theory such tli#tis consistent. Then,
E is an extension of D, W) if and only if E = Cn(W U {cons(d)|d € C}), whereC'is a
maximal subset ab such thatiV U {cons(d)|d € C} is consistent. In particular, ifZ is
an extension ofD, W), then for everyl € D, cons(d) € E or —cons(d) € E.

Normal defaults are sufficient for many applications (cfr discussion of CWA be-
low). However, to represent more complex default reasoimvigving interactions among
defaults, non-normal defaults are necessary.

1.2.4 Closed-World Assumption and Normal Defaults

The Closed-World Assumptigior CWA for short) was introduced by Reiter in [110] in an
effort to formalize ways databases handle negative infaomalt is a defeasible inference
rule based on the assumption that al$ebf sentences designed to represent an applica-
tion domain determineall ground atomic facts that hold in itlposed-world assumption
Taking this assumption literally, the CWA rule infers thegationof every ground atom
not implied byW. Formally, for a set?” of sentences we define

CWA(W) =W U{—a | ais aground atom an®’ [~ a}.

To illustrate the idea, we will consider a simple examplet G& be the set of all
ground atoms in the language andWtC GA. Itis easy to see that

CWA(W) =W U{-a|ae GA\ W}

In other words, CWA derives the negation of every ground atotin /. This is precisely
what happens when databases are queried. If a fact is not idatabase (for instance,
there is no information about a direct flight from Chicago tallBs at 5:00pm on Delta),
the database infers that this fact is false and respondsspwndingly (there iso direct
flight from Chicago to Dallas at 5:00pm on Delta).
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We note that the database may contain errors (there maytibdacflight from Chicago
to Dallas at 5:00pm on Delta). Once the database is fixed (egnemnd atom is included
that asserts the existence of the flight), the derivatiorctsamed previously by the CWA
rule, will not longer be made. It is a classic example of deifgla reasoning!

In the example above, CWA worked precisely as it should, asdlted in a consistent
theory. In many cases, however, the CWA rule is too strondellives too many facts and
yields an inconsistent theory. For instancellif = {a Vv b}, wherea, b are two ground
atoms, then

W tEa and W £ b.

Thus, CWA(W) = {a V b, —a, b} is inconsistent. The question wheth@WA(W) is
consistent is an important one. We note a necessary andauiffitondition given in [85].

Theorem 10 Let W be a set of sentences. ThéfWVA(W) is consistent if and only il
has a least Herbrand model.

If W is a set of ground atoms (the case discussed above) or, mugeadjg, a consistent
Horn theory, theri? has a least Herbrand model. Thus, we obtain the followingltzoy
due to Reiter [110].

Corollary 11 If W is a consistent Horn theory, thefiiWA (W) is consistent.

The main result of this section shows that CWA can be expdebgemeans ofu-
pernormaldefaults under the semantics of extensions. For a groumd atwe define a
supernormal default

T:-a

cwa(a) =
—a

and we set
Dewa = {cwa(a) | a € GA}.
We have the following result [85].

Theorem 12 Let W be a set of sentences.

1. If CWA(W) is consistent, the@n( CWA(WW)) is the unique extension of the default
theory (D cwa, W).

2. If (Dewa, W) has a unigue consistent extension, ti@WA (W) is consistent and
Cn(CWA(W)) is this unique extension 6D cwa, W).

1.2.5 Variants of Default Logic

A number of modifications of Reiter's default logic have bgeaposed in the literature
which handle several examples differently. We present safrtteem briefly here.

To guarantee existence of extensions, [77] has defined altiEfgic based on a two-
place fixed point operator. The first argument contains thievesl formulas, the second
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is used to keep track of justifications of applied defaultsdefault is only applied if its
consequent does not contradict the justification of anyratpplied default. ThenZ is an
extension if and only if there is a s8f; such that E, Sg) is a fixed point. Lukaszewicz
showed that, in his logic, both existence of extensions anud-snonotony are satisfied.

In [22], a cumulative version of default logic is presentdthe basic elements of this
logic are so-calle@ssertionf the form(p, @), in whichp is a formula, and) the set of
consistency conditions needed to deriveA default can only be applied in an extension
if its justifications are jointly consistent with the extéms and with all justifications of
other applied defaults. The logic is called cumulative astifierence relation it determines
satisfies the property @umulativity[79], now more commonly calle@autious Monotony
(cf. Section 1.5).

Joint consistency is also enforced in variants of defagliclaalledconstrained default
logics, which have been proposed independently by [116] and [34 édso [32]). The
major difference between cumulative default logic and eéhtes variants is that the latter
work with standard formulas and construct an additionajlsirset containing all consis-
tency conditions of applied defaults, whereas cumulatefault logic keeps track of this
information in the assertions.

A number of researchers have investigated default theaitagpreferences among the
defaults, e.g. [85, 6, 23, 113, 26]. For a comparison of sofmbiase approaches the
reader is referred to [119]. Finally, [23] contains an apgtoin which reasoning not only
with, but also about priorities is possible. In this appitoabe preference information is
represented in the logical language and can thus be deredeasoned upon dynami-
cally. This makes it possible to describe conflict resolustrategies declaratively and has
interesting applications, for instance, in legal reasgnin

1.3 Autoepistemic Logic

In this section, we discuss autoepistemic logic, one of tlestrstudied and influential
nonmonotonic logics. It was proposed by Moore in [92, 93] ireaction to an earlier
modal nonmonotonic logic of McDermott and Doyle [91]. Histally, autoepistemic
logic played a major role in the development of nonmonotdotgcs of belief. Moreover,
intuitions underlying autoepistemic logic and studied 4ii][ motivated the concept of a
stable model of a logic program [49hs discussed in detail in the next chapter of the
handbook.

1.3.1 Preliminaries, intuitions and basic results

Autoepistemic logic was introduced to provide a formal astcof a way in which an
ideally rationalagent formdeliefsets given some initial assumptions. It is a formalism in
a modal language. In our discussion we assume implicitlyedfsetAt¢ of propositional
variables. We denote by the modal language generated frath by means of boolean
connectives and a (unary) modal operatarThe role of the modal operatdf is to mark
formulas as “believed”. That is, intuitively, formulds A stand for “A is believed.” We
refer to subsets of - asmodal theories We call formulas inLx that do not contain

3We note however, that default logic also played a role in theetbpment of the stable-model semantics [13]
and, in fact, the default-logic connection of stable modétisnately turned out to be more direct [82, 15, 14].
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occurrences of{ modal-freeor propositional We denote the language consisting of all
modal-free formulas by.

Let us consider a situation in which we have a rule that Psafiedones, being a uni-
versity professor, normally teaches. To capture this mulmodal logic, we might say that
if we do not believe that Dr. Jones does not teach (that i$,sfpossible that she does),
then Dr. Jones does teach. We might represent this rule bydalfarmuld.

Kprof ; N =K —teachesy D teaches ;. (1.2)

Knowing only prof ; (Dr. Jones is a professor) a rational agent should build igftest
containingteaches ;. The problem is to define the semantics of autoepistemic kgthat
indeed it is so.

We see here a similarity with default logic, where the same iformalized by a
default

prof (J):teaches(J)lteaches(J) (1.3)

(cf. Section 1.2.1). In default logic, givelv = {prof(J)}, the conclusiorteaches(.J)
is supported a${ prof (J):teaches(J)lteaches(J)}, W) has exactly one extension and it
does contairteaches(.J).

The correspondence between the formula (1.2) and the t€fag) is intuitive and
compelling. The key question is whether formally the autstenic logic interpretation of
(1.2) is the same as the default logic interpretation of)(M& will return to this question
later.

Before we proceed to present the semantics of autoepistegiw we will make a
few comments on (classical) modal logics — formal systemseatoning with modal
formulas. This is a rich area and any overview that would glasitice is beyond the scope
of this chapter. For a good introduction, we refer to [28,. 34¢re we only mention that
many important modal logics are defined by a selection of inaxiams such K, T, D, 4,
5, etc. For instance, the axioms K, T, 4 and 5 yield the wetivikim modal logicS5. The
consequence operator for a modal lof§isayCng, is defined syntactically in terms of the
corresponding provability relatién

For the reader familiar witKripke model$28, 57], we note that the consequence oper-
atorCngs can often be described in terms of a clas&Kopke modelssayC: A € Cng(F)
if and only if for every Kripke modelM € C such that =k E, M =i A, wherefEg
stands for the relation of satisfiability of a formula or askformulas in a Kripke model.
For instance, the consequence operator in the modal &igis characterized byniver-
sal Kripke models. This characterization played a fundamenwtalin the development of
autoepistemic logic. To make our chapter self-containather than introducing Kripke
models formally, we will use a different but equivalent cieterization of the consequence

4To avoid problems with the treatment of quantifiers, we restiur attention to the propositional case.
Consequently, we have to list “normality” rules expliciftyr each object in the domain rather than use schemata
(formulas with variables) to represent concisely famibégpropositional rules, as it is possible in default logic.
The “normality” rule in our example concerns Professor 3amdy. If there were more professors in our domain,
we would need rules of this type for each of them.

5Proofs in a modal logic use as premises given assumptioasyjf instances of propositional tautologies
in the language€ i, and instances of modal axioms of the logic. As inferences;ithey use modus ponens and
thenecessitation rulewhich allows one to conclud® A once A has been derived.
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operator inS5 in terms ofpossible-world structuresvhich we introduce formally later in
the text.

After this brief digression we now come back to autoepistdogic. What is andeally
rational agentor, more precisely, which modal theories could be taken bsflsets of such
agents? Stalnaker [125] argued that to be a belief set ofeallydrational agent a modal
theory E C Lk must satisfy three closure properties.

First, E must be closed under the propositional consequence opefa® will de-
note this operator b¢'n®. Thus, the first property postulated by Stalnaker can bedtat
concisely as follows:

B1: Cn(E) C E.

We note that modal logics offer consequence operators vanektronger than the operator
Cn. One might argue that closure under one of these operatgts ivé a more appropriate
for the condition (B1). We will return to this issue in a morhen

Next, Stalnaker postulated that theories modeling beéief of ideally rational agents
must be closed undepositive introspection if an agent believes iM, then the agent
believes she believe$. Formally, we will require that a belief sét satisfies:

B2: if Aec E,thenKAc E.

Finally, Stalnaker postulated that theories modelingabskets of ideally rational agents
must also be closed undeegative introspectianf an agent does not beliew&, then the
agent believes she does not belieleThis property is formally captured by the condition:

B3: if A¢ E, then—-KA € E.

Stalnaker’s postulates have become commonly acceptec atefiming properties of
belief sets of an ideally rational agent. Thus, we refer ta@ahtadheories satisfying con-
ditions (B1)—(B3) simply abelief sets The original term used by Stalnaker wastable
theory. We choose a different notation since in nonmoneotoFasoning the terrstableis
now most commonly associated with a class of models of logignams, and there are
fundamental differences between the two notions.

Belief sets have a rich theory [85]. We cite here only two Itssihhat we use later in
the chapter. The first result shows that in the context of thelitions (B2) and (B3) the
choice of the consequence operator for the condition (B&yimes essentially immaterial.
Namely, it implies that no matter what consequence relatierchoose for (B1), as long
as it contains the propositional consequence relation @odntained in the consequence
relation for S5, we obtain the same notion of a belief set.

Proposition 13 If E C Lk is a belief set, the’ is closed under the consequence relation
in the modal logicS5.

The second result shows that belief sets are determinedelnyntiodal-free formulas.
This property leads to a representation result for belief. se

SWhen applying the propositional consequence operatoragaltheories, as we do here, we treat formulas
K A as propositional variables.
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Proposition 14 Let T' C L be closed under propositional consequence. Then=
Cngs(TU{-KA | A€ £\T})isabeliefsetand&cNL = T. Moreover, ifE is a belief set
thenT = E N L is closed under propositional consequence @&hek Cngs (7' U {—K A |
AeL\T}).

Modal nonmonotonic logics are meant to provide formal meargtudy mechanisms
by which an agent forms belief sets starting with dSef initial assumptions. These belief
sets must contaiff’ but may also satisfy some additional properties. A preciapping
assigning to a set of modal formulas a family of belief setwliwt determines a modal
nonmonotonic logic.

An obvious possibility is to associate with a §etC Ly all belief setsE such that
T C E. This choice, however, results in a formalism whichnisnotone Namely, if
T C T', then every belief set fdf” is a belief set fofl’. Consequently, the set of “safe”
beliefs — beliefs that belong to every belief set associafigi 7’ — grows monotonically
asT gets larger. In fact, this set of safe beliefs basedlbooincides with the set of
consequences df in the logic S5. As we aim to capture honmonotonic reasortimg,
choice is not of interest to us here.

Another possibility is to employ a minimization principléJinimizing entire belief
sets is of little interest as belief sets are incomparabtl véspect to inclusion and so,
each of them is inclusion-minimal. Thus, this form of minkaiion does not eliminate any
of the belief sets containing, and so, it is equivalent to the approach discussed above.

A more interesting direction is to apply the minimizatiomngiple to modal-free frag-
ments of belief sets (cf. Proposition 14, which implies ttiegre is a one-to-one corre-
spondence between belief sets and sets of modal-free fasnaldsed under propositional
consequence). The resulting logic is in fact nonmonotonttiareceived some attention
[54].

The principle put forth by Moore when defining the autoepistelogic can be viewed
as yet another form of minimization. The conditions (B1)3)YBnply that every belief set
E containingT satisfies the inclusion

Cn(TU{KA|AcE}U{-KA|A¢EY})CE.

Belief sets, for which the inclusion is proper contain bisligat do not follow from initial
assumptions and from the results of “introspection” andseundesirable. Hence, Moore
[93] proposed to associate withonly those belief set&, which satisfy theequality.

Cn(TU{KA|AcE}U{-KA|A¢ E}) = E. (1.4)

In fact, when a theory satisfies (1.4), we no longer need tonasghat it is a belief set —
(1.4) implies that it is.

Proposition 15 For everyT C L, if E C Lk satisfies (1.4) thed’ satisfies (B1)—(B3),
that is, it is a belief set.

Moore called belief sets defined by (1table expansionasf 7. We will refer to them
simply asexpansion®f 7', dropping the ternstabledue to the same reason as before. We
formalize our discussion in the following definition.

Definition 4 LetT be a modal theory. A modal theoFyis anexpansiorof T' if E satisfies
the identity (1.4).
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Belief sets have an elegant semantic characterizationmmstef possible-world struc-
tures. LetZ be the set of all 2-valued interpretations (truth assigrisjesf A¢. Possible-
world structuresare subsets df. Intuitively, a possible-world structure collects allent
pretations thamightbe describing the actual world and leaves out those thatitddyilo
not.

A possible-world structure is essentially a Kripke modethva total accessibility re-
lation [28, 57]. The difference is that the universe of a Kemmodel is required to be
nonempty, which guarantees that tieoryof the model (the set of all formulas true in
the model) is consistent. Some modal theories consistéhtregpect to the propositional
consequence relation determine inconsistent sets offefiBowing possible-world struc-
tures to be empty is a way to capture such situations andreliffiate them from those
situations, in which a modal theory determines no belies aeall.

Possible-world structures interpret modal formulas, ihassign to them truth values.

Definition 5 Let@ C 7 be a possible-world structure ande 7 a two-valued interpreta-
tion. We define thizuth function¢ ; inductively as follows:

1. Ho.1(p) = I(p), if pis an atom.

2. Ho,1(A1 N Ag) = trueif Hg (A1) = true and’Hg ;(A2) = true. Otherwise,
Ho.1(A1 A Ag) = false.

3. Other boolean connectives are treated similarly.

4. Ho.1(KA) = true, if for every interpretation/ € @, Hg,;(A) = true. Other-
wise, Hg (K A) = false.

It follows directly from the definition that for every formald € Ly, the truth value
He,1(IKXA) does not depend ah It is fully determined by the possible-world structupe
and we will denote it by (K A), dropping! from the notation. Sinc€) determines the
truth value of every modal atom, every modal formuas eitherbelieved(Hq (K A) =
true) or not believedn @ (Hg(K A) = false). In other words, thespistemicstatus of
every modal formula is well defined in every possible-wotldicture.

The theory of a possible-world structur€ is the set of all modal formulas that are
believedn Q. We denote it by'h(Q). Thus, formally,

Th(Q) ={A| Ho(KA) = true}.

We now present a characterization of belief sets in term®s$iple-world structures,
which we promised earlier.

Theorem 16 A set of modal formulagl C L is a belief set if and only if there is a
possible-world structur€) C 7 such thatt = Th(Q).

Expansions of a modal theory can also be characterized nimstef possible-world
structures. The underlying intuitions arise from conditga way to revise possible-world
structures, given a sét of initial assumptions. The characterization is also dugltore.
Namely, for every modal theof¥/, Moore [92] defined an operatd); onP(Z) (the space
of all possible-world structures) by setting

Dr(Q) ={I | Hg,1(A) = true, foreveryA € T}.
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The operatorDr specifies a process to revise belief sets encoded by thesporrding
possible-world structures. Given a modal the@yC L, the operatorDr revises a
possible-world structur€ with a possible-world structur®,(Q). This revised structure
consists of all interpretations that aaeceptablegiven the current structur€® and the
constraints on belief sets encoded By Specifically, the revision consists precisely of
those interpretations that make all formulagitrue with respect ta).

Fixed points of the operatabr are of particular interest. They represent “stable”
possible-world structures (and so, belief sets) — they aaba revised any further. This
property is behind the role they play in the autoepistenmgiclo

Theorem 17 LetT C L. A set of modal formulag’ C L is an expansion dt’ if and
only if there is a possible-world structué@ C 7 such that)) = Dr(Q) andE = Th(Q).

This theorem implies a systematic procedure for constigekpansions dfnitemodal
theories (or, to be more precise, possible-world strustthrat determine expansions). Let
us continue our “Professor Jones” example and let us lookretay

T = {prof ;, Kprof ; N =K —teaches; D teaches}.

There are two propositional variables in our language amusequently, four propositional
interpretations:

I, = 0 (neitherprof ; nor teaches ; is true)
I, = {prof ;}

I35 = {teaches s}

I, = {prof ;, teaches ; }.

There are 16 possible-world structures one can build ofetiiesr interpretations. Only
one of them, though@) = {prof ;, teaches;}, satisfiesDr(Q) = @ and so, generates
an expansion of’. We skip the details of verifying it, as the process is longd tedious,
and we present a more efficient method in the next section. déehrowever, that for the
basic “Professor Jones” example autoepistemic logic gheesame conclusions as default
logic.

We close this section by noting that the autoepistemic logit also be obtained as a
special case of a general fixed point schema to define modai@metonic logics proposed
by McDermott [90]. In this schema, we assume that an agerst ss@me modal logis
(extending propositional logic) to capture her basic medmsference. We then say that a
modal theoryE C L is anS-expansiorof a modal theoryl” if

E=Cns(TU{-KA|A¢ E}). (1.5)

In this equation,Cngs represents the consequence relation in the modal I8gidf £
satisfies (1.5), thet is closed under the propositional consequence relatiormeMer,

E is closed under the necessitation rule andfsds closed under positive introspection.
Finally, since{—KA | A ¢ E} C E, E is closed under negative introspection. It follows
that solutions to (1.5) are belief sets containifigThey can be taken as models of belief
sets of agents reasoning by means of modal Iégand justifying what they believe on
the basis of initial assumptions i andassumptiongbout whanot to believe (negative



20 1.

introspection). By choosing different monotone logi€swe obtain from this schema
different classes af-expansions of .

If we disregard inconsistent expansions, autoepistergic ktan be viewed as a special
instance of this schema, with = KD45, the modal logic determined by the axioms K, D,
4 and 5 [57, 85]. Namely, we have the following result.

Theorem 18 LetT C L. If E C Lk is consistent, thei' is and expansion df if and
only if £/ is a KD45-expansion df, that is,

E = Cixpas(TU{—=KA| A ¢ EY).

1.3.2 Computational Properties

The key reasoning problems for autoepistemic logic areditegskeptical inferencéwvhether
a formula is in all expansionsgredulous inferencéwhether a formula is in some ex-
pansion), and finding expansions. Like default logic, finster autoepistemic logic is
not semi-decidable even when quantifying into the scopehefrhodal operator is not
allowed [94]. If quantifying-in is allowed, the reasoningoplems are highly undecid-
able [63].

In order to clarify the computational properties of propiosial autoepistemic logic
we present a finitary characterization of expansions basddlicsets[94, 95]. A full set
is constructed from thél A and—K A subformulas of the premises and it serves as the
characterizing kernel of an expansion. An overview of otiygsroaches to characterizing
expansions can be found in [95].

The characterization is based on the set of all subformul#sedorm K A in a set of
premisesl’. We denote this set lyf - (7'). We stress that in the characterization only the
classical consequence relatidin) is used wherd( A formulas are treated as propositional
variables and no modal consequence relation is neededniplifyi the notation, for a set
T of formulas we will write—T" as a shorthand fof—F | F € T'}.

Definition 6 (Full Sets) For a set of formulad’, a setS C Sf i (T") U =Sk (T') is T-full
if and only if the following two conditions hold for evekyA € Sf (T'):

e AcCn(TUS)ifandonlyifKA € S.

e AZCn(TUS)ifandonly if—-KA € S.

In fact, for aT'-full set S, the classical consequenceslof) S provide the modal-free part
of an expansion. As explained in Proposition 14 this uniguketermines the expansion.
Here we give an alternative way of constructing an expangiom a full set presented
in [95] which is more suitable for automation. For this we éoypa restricted notion of
subformulas:Stf.(F') is the set ofprimary subformulas ofF', i.e., all subformulas of the
form K A of F which are not in the scope of anoth&roperator inF'. For example, ifp
andg are atomicSt L (K (~Kp — q)AK—q) = {K(~Kp — q), K—q¢}. The construction
uses a simple consequence relatiopr which is given recursively on top of the classical
consequence relatidbn. It turns out that this consequence relation corresponalstigxo
membership in an expansion when given its characterizithgdti
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Definition 7 (K-consequence)Given a set of formulag' and a formulaF’,
T =k F ifandonly if F € Cn(T U SBr(F))
where SB(F) = {KA e St (F) | T Ex A} U{-KA e =St (F)|T £k A}.
For an expansioiy of T', there is a correspondirif-full set
{(KFeE|KF eSfg(T)}U{-KF e E| KF € Stg(T)}
and for ar'-full set S,
{F|ITUS Ex F}

is an expansion df'. In fact it can be shown [95] that there is a one-to-one cpordence
between full sets and expansions.

Theorem 19 (Expansions in Terms of Full Sets) etT" be a set of autoepistemic formu-
las. Then a function SEdefined as

SEr(S) = {F | TUS b« F}

gives a bijective mapping from the setBffull sets to the set of expansionsBfand
for a T-full setS, SEr(S) is the unique expansiof of T such thatS C {KF | F €
E}U{-KF|F ¢ E}.

Example 2 Consider our “Professor Jones” example and a set of formulas
T = {prof ;, Kprof ; AN =K —teachesy D teaches}.
NowSf i (T) = { Kprof ;, K—teaches s} and there are four possible full sets:

{—~Kprof ;,~K-teaches;},{Kprof ;,~K-teaches},
{—Kprof ;, K—teaches s}, { Kprof ;, K—teachesj}

Itis easy to verify that only; = { K prof ;, ~K—teaches ;} satisfies the conditions in Def-
inition 6, that is,prof € Cn(T'U S1) and—teaches; ¢ Cn(T'U S1). HenceT has exactly
one expansion SKE S;) which contains, for instanceéy K prof ; and—K—Kteaches ; as
TUS Ex KKprof jandT U S; =x ~K—Kteachesy hold.

Example 3 Consider a set of formulas
T' ={Kp D p}.

Now Sfx (T") = {Kp} and there are two possible full set§-Kp} and { Kp} which
are both full. For instancep € Cn(7” U {Kp}). Hence,I' has exactly two expansions
SEr ({—Kp}) and Sk ({ Kp}).

The finitary characterization of expansions in Theorem 1pli@s that propositional
autoepistemic reasoning decidableand can be implemented polynomial spaceThis
is because the conditions on a full set and on membership afladtrary autoepistemic
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formula in an expansion induced by a full set are based on ldmsical propositional
consequence relation which is decidable in polynomial epac

Similar to default logic, deciding whether an expansiorsexand credulous inference
arex¥ -complete problems and sceptical inferendds-complete for autoepistemic logic
as well as for many other modal nonmonotonic logics [51, $4,121]. This implies that
modal nonmonotonic reasoning is strictly harder than @aseseasoning (unless the poly-
nomial hierarchy collapses) and achieving tractabilityuiees substantial restrictions on
how modal operators can interact [83, 84]. For more inforomabn automating autoepis-
temic reasoning, see for instance [97, 36].

1.4 Circumscription

1.4.1 Motivation

Circumscription was introduced by John McCarthy [86, 87]ary of its formal aspects
were worked out by Vladimir Lifschitz who also wrote an exent overview [74]. We
follow here the notation and terminology used in this ovenwarticle.

The idea underlying circumscription can be explained usihmgteaching professors
example discussed in the introduction. There we considesied) the following first order
formula to expresprofessors normally teach

YV (prof (x) A mabnormal(z) D teaches(x)).

The problem with this formula is the following: in order toyp it to Professor Jones, we
need to prove that Jones is not abnormal. In many cases wdysimmot have enough
information to do this. Intuitively, we do not expect objgtd be abnormal — unless we
have explicit information that tells us they indeed are abmad. Let us assume there is no
reason to believe Jones is abnormal. We implicitly assuma MdCarthy’s words: jump
to the conclusion —abnormal(Jones) and use it to conclud&aches(Jones).

What we would like to have is a mechanism which models thimfof jumping to
conclusions. Note that what is at work here is a minimizatibtihe extent of the predicate
abnormal: we want as few objects as possible — given the availablenmdtion — to
satisfy this predicate. How can this be achieved?

The answer provided by circumscription has a syntacticdlaacorresponding seman-
tical side. From the syntactical point of view, circumstiop is a transformation (more
precisely, a family of transformations) of logical formslaGiven a sentencé represent-
ing the given information, circumscription produces a tadlly stronger sentencé*. The
formulas which follow fromA using circumscription are simply the formulas classically
entailed byA*. In our example A contains the given information about professors, their
teaching duties, and Jones. In addition to this informatithalso expresses that the ex-
tent of abnormal is minimal. Note that in order to express minimality of a poade one
has to quantify over predicates. For this reagdrwill be a second order formula.

Semantically, circumscription gives up the classical pofrview that all models of a
sentenced have to be regarded as equal possibilities. In our examiffereht models of
A may have different extents for the predicateiormal (the set of objects belonging to
the interpretation ofibnormal) even if the domain of the models is the same. It is natural
to consider models with fewer abnormal objects — in the sehset inclusion — as more
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A CTROTATP) P ||
P(a) Ve(P(z) =z =a)
P(a) A P(b) Ve(P(x) = (x =aVa =D0))
P(a)V P(b) Ve(P(x) = (z = a)) VV(P(z) =z =1b))
-P(a) Vz—P(x)
Vz(Q(z) O P(x)) vz(Q(z) = P(x))

Table 1.1: Examples of circumscribirfg

plausible than those with more abnormal objects. This iedw preference relation on
the set of all models. The idea now is to restrict the definitid entailment to the most
preferred models only: a formulfis preferentially entailed by if and only if f is true
in all maximally preferred models of.

We will see that this elegant model theoretic constructiptares exactly the syntactic
transformation described above.

1.4.2 Defining Circumscription

For the definition of circumscription some abbreviations aseful. LetP and(@ be two
predicate symbols of the same arity

P=Q  abbreviates V- 2,(P(z1,...,2,) =
P<Q abbreviates  Vxy-- -z, ((P(x1,...,2,) D
P< (@  abbreviates (P<Q)A-(P=Q).

Q(.’L‘l,..., n))
Q

(1,...,2n))

The formulas expressP and@ have the same extent, the extentris a subset of the
extent of@, and the extent oP is a proper subset of the extent@f respectively.

Definition 8 Let A(P) be a sentence containing a predicate symBolLetp be a pred-
icate variable of the same arity a. The circumscription o’ in A(P), which will be
denoted byYCTRC[A(P); P), is the second order sentence

A(P) A —3p[A(p) Ap < P].

By A(p) we denote here the result of uniformly substituting predicmnstan® in A(P)
by variablep. Intuitively, the second order formutadp[A(p) A p < P] says: it is not
possible to find a predicagesuch that

1. p satisfies what is said iA (P) aboutP, and
2. the extent op is a proper subset of the extentBf

In other words: the extent d?P is minimal subject to the conditioA(P).

Table 1.1 presents some simple formulH$) together with the result of circumscrib-
ing P in A(P). The examples are taken from [74].

Although it gives desired results in simple cases, this fofwircumscription is not yet
powerful enough for most applications. It allows us to miziethe extent of a predicate,
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but only if this does not change the interpretation of anyepoymbol in the language.
In the Professor Jones example, for instance, minimiziegtedicateibnormal alone is
not sufficient to concludecaches(Jones). To obtain this conclusion, we have to make
sure that the extent eéaches is allowed to change during the minimizationadfrormal.
This can be achieved with the following more general debniti

Definition 9 LetA(P, Z1,. .., Z,) be a sentence containing the predicate constaahd
predicate/function constants;. Letp, z1, ..., z,, be predicate/function variables of the
same type and arity aB, 71, . . ., Z,,,. The circumscriptionoP in A(P, Z1, ..., Z,,) with
varied 7y, ..., Z,,, denotedCIRC[A(P, Z1, ..., Zm); P; Z1, ..., Zy), is the second or-
der sentence

AP, Zy, ..., Zm) N—3pz1 ... 2;m|A(D, 21, - . - 2m) A p < PJ.

A further generalization where several predicates can pémded in parallel is also very
useful. Whenever we want to represent several default,wieseed different abnormality
predicatesby, abs etc., since being abnormal with respect to one default inaotssarily
related to being abnormal with respect to another default.

We first need to generalize the abbreviatidhs= @, P < Q and P < @ to the
case where”? and( are sequences of predicate symbols. Pex Py,..., P, andQ =

Q1,...,Qn, respectively:

P=qQ abbreviates P =QA...ANP,=Q,
P<qQ abbreviates P < Qi A...ANP,<Q,
P<qQ abbreviates P <QA-(P=Q).

Here is the generalized definition:

Definition 10 LetP = P, ..., P, be a sequence of predicate constatts: 71,..., 7,

a sequence of predicate/function constants. Furthermetel (P, Z) be a sentence con-
taining the predicate constanty and predicate/function constani . Letp = py,...ps
andz = zq, ..., z,, be predicate/function variables of the same type and agtja. . ., Py,
respectivelyZ,, ..., Z,,. The (parallel) circumscription of in A(P, Z) with varied Z,
denotedCI RC[A(P, Z); P; Z], is the second order sentence

A(P,Z) N —3pz[A(p,2) Ap < PJ.

Predicate and function constants which are neither mimcthimor varied, i.e., neither i
nor in Z, are called fixed.

1.4.3 Semantics

Circumscription allows us to minimize the extent of pretksa This can be elegantly
described in terms of a preference relation on the modelseoitcumscribed sentence
Intuitively, we prefer a moded/; over a modelM/; whenever the extent of the minimized
predicate(s)P is smaller inM; than in M,. Of course,M; can only be preferred over
M, if the two models are comparable: they must have the samenseivand they have to
agree on the fixed constants.

In the following, for a structurd/ we use M | to denote the universe @f andM [[C]]
to denote the interpretation of the (individual/functior@dicate) constart in M.
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Definition 11 Let M; and Ms be structures,P a sequence of predicate constansa
sequence of predicate/function constait. is at least asP; Z-preferred asi/,, denoted
M, <P3Z M,, whenever the following conditions hold:

1. |M;| = | M2,
2. My[[C]] = M,[[C]] for every constant’ which is neither inP nor in Z,

3. Mi[[P;]] € M,[[P;]] for every predicate constai®; in P.

The relation<”:Z is obviously transitive and reflexive. We say a structlifeis <7:%-
minimal within a set of structure$4 whenever there is no structufd’ € M such that
M' <¥Z M. Here<%:Z is the strict order induced by "3%: M’ <¥Z M if and only if
M’ <FZ M and notM <F3Z M.

The following proposition shows that th; Z-minimal models ofA capture exactly
the circumscription ofP in A with variedZ:

Proposition 20 M is a model of CIRC[A;P;Z] if and only if\/ is <73Z-minimal among
the models ofA.

It should be pointed out that circumscription may lead t@imgistency, even if the circum-
scribed sentencd is consistent. This happens whenever we can find a betterIrfavde
each model, implying that there is an infinite chain of more arore preferred models. A
discussion of conditions under which consistency of cirsarption is guaranteed can be
found in [74]. For instance, it is known théatl RC[A; P; Z] is consistent whenevet is
universal (of the formvz A wherez is a tuple of object variables andlis quantifier-free)
andZ does not contain function symbols.

1.4.4 Computational Properties

In circumscription the key computational problem is thasoéptical inference, i.e., de-
termining whether a formula is true in all minimal models. wéwer, general first-order
circumscription is highly uncomputable [120]. This is natising as circumscription
transforms a first order sentence into a second order foramdgit is well-known that
second order logic is not even semi-decidable. This meatsrntorder to compute cir-
cumscription we cannot just use our favorite second-ordevgy - such a prover simply
cannot exist. We can only hope to find computational methordsdrtain special cases of
first order formulas.

We first discuss techniques for computing circumscriptiierience in the first order
case and then present a finitary characterization of minmealels which illustrates com-
putational properties of circumscription.

Methods for computing circumscription can be roughly categd as follows:

e guess and verifythe idea is to guess right instances of second order vagabl
prove conjectures about circumscription. Of course, thi imethod requiring ade-
quate user interaction, not a full mechanization,

o translation to first order logicthis method is based on results depending on syntactic

restrictions and transformation rules,
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e specialized proof procedurethese can be modified first order proof procedures or
procedures for restricted second order theories.

As an illustration of the guess and verify method considerdbnes example again. Ab-
breviatingabnormal with ab we have

A(ab, teaches) = prof (J) AVx(prof (x) A —ab(z) D teaches(x)).
We are interested i6'T RC[A(ab, teaches); ab; teaches] which is
A(ab, teaches) A —3pz[A(p, z) Ap < ab.

By simple equivalence transformations and by spelling batabbreviatiorp < ab we
obtain

A(ab, teaches) AVpz[A(p, z) AVz(p(x) D ab(z)) D Ve(ab(z) D p(x))].

If we substitute the right predicate expressions for the noiversally quantified predicate
variablesp andz, we can indeed proveeaches(J). By a predicate expression we mean
an expression of the formz, ..., x,.F whereF is a first order formula. Applying this
predicate expression to n termis. . ., t,, yields the formula obtained by substituting all
variablese; in F' uniformly by ;.

In our example we guess that no objectids that is we substitute fqr the expression
Az.false. Similarly, we guess that professors are the teaching tshjee. we substitute
for z the expressionz.prof (). The resulting first order formula (after simple equivakenc
transformations) is

A(ab, teaches)A
[prof (J) AVz(prof (z) D prof(z)) AVz(false D ab(z)) D Va(ab(z) D false)].

It is easy to verify that the first order formula obtained witiese substitutions indeed
implies teaches(J). In cases where derivations are more difficult one can, ofsmu
use a standard first order theorem prover to verify conjestafter substituting predicate
expressions.

For the second method, the translation of circumscriptidirst order logic, a number
of helpful results are known. We cannot go into much detaiétend refer the reader to
[74] for an excellent overview. As an example of the kind ofukés used we present two
useful propositions.

Let A(P) be aformula and® a predicate symbol occurring ih. A formula A, without
any occurrence ob and=, is positive/negativén P if all occurrences o in A(P) are
positive/negative. (We recall that the occurrence of a ipegd symbolP in a formula
A(P) without occurrences ab and= is positive if the number of its occurrences in the
range of the negation operator is positive. Otherwise riegative.)

Proposition 21 Let B(P) be a formula without any occurrencesofand=. If B(P) is
negative inP, thenCIRC[A(P) A B(P); P] is equivalent taCIRC[A(P); P] A B(P).

Proposition 22 Let A(P, Z) be a formula without any occurrencesofaind=. If A(P, Z)
is positive inP, thenCIRC[A(P, Z); P; Z] is equivalent to

A(P, Z) N =3xz[P(x) N A(My(P(y) ANz £ ), 2)].
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Herex andy stand fom-tuples of distinct object variables, wherés the arity of predicate
symbol P. As a corollary of these propositions we obtain te&tRC[A(P) A B(P); P)
is equivalent to a first order formula whenewfP) is positive andB(P) negative inP
(assumingA(P) and B(P) do not contairb and=).

Apart from translations to first order logic, translatioasdgic programming have also
been investigated [48].

Several specialized theorem proving methods and systewesdeen developed for
restricted classes of formulas. Among these we want to me®rzymusinski’'s MILO-
resolution [109], Baker and Ginsberg's argument basedigiscriptive prover [7], the
tableaux based method developed by NigniéB], and two algorithms based on second
order quantifier elimination: the SCAN algorithm [45, 102dahe DLS algorithm [37].

We now turn to the question how minimal models, the key notmoaircumscription,
can be characterized in order to shed light on computatiorglerties of circumscription
and its relationship to classical logic. We present a charaation of minimal models
where the minimality of a model can be determined indepethgehother models using
a test for classical consequence. We consider here pgredidicate circumscription in the
clausal case and with respect to Herbrand interpretatindsaaharacterization proposed
in [99]. A similar characterization but for the proposit@rcase has been used in [41] in
the study of the computational complexity of propositiociatumscription.

Definition 12 (Grounded Models) Let T" be a set of clauses and |t and R be sets of
predicates. A Herbrand interpretatial/ is said to begroundedn (T, P, R) if and only if
for all ground atomg(#) such thap € P, M = p(t) impliesp(t) € Cn(T UNSPR) (M)
where

NER (M) = {=q(1) | q() is aground atomg € P U R, M - q()} U
{q() | q(t) is a ground atomy € R, M = q()}.

Theorem 23 (Minimal Models) LetT be a set of clauses and I&tand Z be the sets of
minimized and varied predicates, respectively. A Herbramelrpretation) is a <7i%-
minimal model off" if and only if M is a model ofl" and grounded inT, P, R) whereR
is the set of predicates ifi that are in neitherP nor Z.

Example 4 LetT = {p(z)V—q(z)} and let the underlying language have only one ground
terma. Then the Herbrand base {$(a), ¢(a)}. Consider the sets of minimized predicates
P = {p} and varied predicate¥ = (). Then the set of fixed predicat&s= {q}. Now
the Herbrand interpretatiol = {p(a),q(a)}, which is a model of’, is grounded in
(T, P, R) becauseN‘"#) (M) = {q(a)} andp(a) € Cn(T U N{PR) (M) holds. Hence,
M is a minimal model of . If Z = {¢}, thenR = () and M is not grounded inT’, P, R)
because&N ("1 (M) = ( andp(a) ¢ Cn(T U NPR)Y (M), Thus, ifp is minimized buy

is varied, M is not a minimal model df.

Theorem 23 implies that circumscriptive inference is dabld in polynomial space in
the propositional case. Like for default logic, it is stijcharder than classical proposi-
tional reasoning unless the polynomial hierarchy collagit isITS -complete [40, 41].
For tractability considerable restrictions are neededl [27
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1.4.5 Variants

Several variants of circumscription formalizing diffetdinds of minimization have been
developed. For instance, pointwise circumscription [Aldves us to minimize the value
of a predicate for each argument tuple separately, ratlzr mthinimizing the extension
of the predicate. This makes it possible to specify very fileximinimization policies.
Autocircumscription [105] combines minimization with inspection.

We will focus here on prioritized circumscription [70]. Inamy applications some
defaults are more important than others. In inheritanceahigies, for instance, a default
representing more specific information is intuitively exfsel to “win” over a conflicting
default: if birds normally fly, penguins normally don't, thene would expect to conclude
that a penguin doesn't fly, although it is a bird. This can beleded by minimizing some
abnormality predicates with higher priority than others.

Prioritized circumscription splits the sequenéef minimized predicates into disjoint
segmentsP!, ..., P*. Predicates ifP! are minimized with highest priority, followed by
those inP? etc. Semantically, this amounts to a lexicographic conspariof models.
We first compare two model&/; and M, with respect t@Pl’Z, whereZ are the varied
symbols. If the models are incomparable, or if one of the rwdestrictly preferred
(<P1~Z holds), then the relationship between the models is estediand we are done. If
M, =P"Z M, we go on with<?*+Z | etc.

The prioritized circumscription oP!, ..., P* in A with variedZ is denoted

CIRC[A; P > ... > P*; 7).

We omit its original definition and rather present a chamd@adion based on a result in
[70] which shows that prioritized circumscription can bdueed to a sequence of parallel
circumscriptions:

Proposition 24 CIRC[A; P! > ... > P*; Z] is equivalent to the conjunction of circum-

scriptions
k

/\ CIRC[A; P;; P, ... P*, 7]

=1

1.5 Nonmonotonic Inference Relations

Having discussed three specific nonmonotonic formalisnt®isiderable detail, we will
now move on to an orthogonal theme in nonmonotonic reasamisgarch: an abstract
study of inference relations associated with nonmonotfa@éeasible) reasoning. Circum-
scription fits in this theme quite well — it can be viewed as &areple of a preferential
model approach, yielding a preferential inference refatidowever, as we mention again
at the end of this chapter, it is not so for default and auttiepiic logics. In fact, casting
these two and other fixed point logics in terms of the semamproach to nonmonotonic
inference we are about to present is one of major problem®wfhenotonic reasoning
research.

Given what we know about the world, when could a formBaeasonably be con-
cluded from a formulad? One “safe” answer is provided by the classical concept of
entailment. Lefl’ be a set of first-order logic sentences (an agent’s knowlatget the
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world). The agentlassicallyinfers a formulaB if B holds ineverymodel of T in which
A holds.

However, the agent’s knowledge of the world is typicallydnplete, and so, inference
relations based on formalisms of defeasible reasoningfaigrficant interest, too. Under
circumscription, the agent might infé&t from A if B holds in everyminimalmodel ofT’,
in which A holds, A ~r .- B. In default logic, assuming the knowledge of the world is
given in terms of a seb of defaults, the agent might infd? from A, A ~p B, if Bisin
everyextension of the default theofy, { A}).

These examples suggest that inference can be modeled aara tglation onl. The
question we deal with in this section is: which binary relai onL are inference relations
and what are their properties?

In what follows, we restrict ourselves to the case whaonsists of formulas of propo-
sitional logic. We use the infix notation for binary relatioand writeA ~ B to denote
that B follows from A, under a concept of inference modeled by a binary relatiam L.

1.5.1 Semantic Specification of Inference Relations

Every propositional theor§' determines a set of iteodels Mod(T'), consisting of propo-
sitional interpretations satisfying. These interpretations can be regarded as complete
specifications of worlds consistent withor, in other words, possible givén

An agent whose knowledge is described Bymight reside in any of these worlds.
Such an agent may decide to infBre £ from A € L, written A 1 B, if in everyworld
in which A holds, B holds, as well. This approach sanctions only the most coatee
inferences. They will hold no matter what additional infation about the world an agent
may acquire. Inference relations of the fokrm are important. They underlie classical
propositional logic and are directly related to the logeatiailment relatiof=. Indeed, we
have thatd -, Bifandonly if T, A = B.

The class of inference relations of the fokm has a characterization in terms of ab-
stract properties of binary relations @h The list gives some examples of properties of
binary relations relevant for the notion of inference.

Monotony if A D B isatautology and3 ~ C, thenA ~ C
Right Weakening if A D B isatautology and’ ~ A, thenC ~ B
Reflexivity Ar A

And if A~ BandA ~ CthenA~ BAC

Or if A~ CandB ~ CthenAv B~ C

It turns out that these properties provide an alternatille{anon-constructive) speci-
fication of the class of relations of the fory-. Namely, we have the following theorem
[64].

Theorem 25 A binary relation on. is of the form~1 if and only if it satisfies the five
properties given above.

Due to the property oMonotony inference relations do not give rise to defeasible
arguments. To model defeasible arguments we need lessreatige inference relations.
To this end, one may relax the requirement tBatust hold ineveryworld in which A
holds. In commonsense reasoning, humans often diffeterttietween possible worlds,
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regarding some of them as more typical or normal than oth&ttsen making inferences
they often consider only those worlds that are most typizargthe knowledge they have.
Thus, they might infel3 from A if B holds in every most typical world in whicA holds
(and not in each such world).

Preferential model§64] provide a framework for this general approach. The kkmai
is to use atrict partial ordef, called apreference relationto compare worlds with respect
to their “typicality”, with more typical worlds preferreaess typical ones. Given a strict
partial order< on a setV, an elementy € W is <-minimal if there is no element’ € W
such thatw’ < w.

In the following definition, we use again the termpassible-world structureThis time,
however, we use it to denote a slightly broader class of ¢bjban sets of interpretations.

Definition 13 A generalpossible-world structure is a tupl@¥V, v), whereW is a set of
worldsandw is a function mapping worlds to interpretatichsf A is a formula, we define

W(A) ={weW:v(w) = A}.

A preferential modeis a tuplew = (W, v, <), where(W, v) is a general possible-world
structure and< is a strict partial order onW satisfying the followingmoothnesgon-
dition: for every sentencel and for everyw € W(A), w is <-minimal or there is
w’ € W(A) such thatw’ < w andw’ is a<-minimal element ofV/ (A).

The setiW(A) gathers worlds in whickd holds. Minimal elements i (A) can be
viewed as most typical states wheteholds. The smoothness condition guarantees that
for every worldw € W (A) which is not most typical itself, there is a most typical etiat
W(A) that is preferred taw.

Preferential models formalize the intuition of reasonimgtlee basis of most preferred
(typical) models only and allow us to specify the correspogaoncept of inference.

Definition 14 If W is a preferential model (with the ordering), then the inference rela-
tion determined byV, ry, is defined as follows: fod, B € L, A ~y, B if B holds in
every<-minimalworld in W (A).

We call inference relations of the form,y,, whereW is a preferential modeprefer-
ential. In general, they do not satisfy the propertyMdnotony

Propositional circumscription is an example of this geherathod of defining infer-
ence relations. Lef stand for the set of all interpretations 6f Furthermore, lef” and
Z be two disjoint sets of propositional variables in the laamger We note that the rela-
tion <¥Z satisfies the smoothness condition. Thigs,v, <¥%), wherev is the identity
function, is a preferential model. Moreover, it defines thme inference relation as does
circumscription.

Shoham'’s preference logic [123] is another specializatibthe preferential model
approach. As in circumscription, the set of worlds consiétall interpretations ofZ but
an arbitrary strict partial order satisfying the smoottsnesnditiorf can be used.

A binary relation that is irreflexive and transitive.

8Typically, W is assumed to be nonempty. This assumption is not necessasyrfconsiderations here and
so we do not adopt it.

%In the original paper by Shoham, a stronger condition of fiaihdedness was used.
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Preference logics are very close to preferential modelsweder, allowing multiple
worlds with the same interpretation (in other words, usiegegal possible-world struc-
tures rather than possible-world structures) is essenfiaé resulting class of inference
relations is larger (we refer to [25] for an example).

Can preferential relations be characterized by means o preperties? The answer
is yes but we need two more properties of binary relatioren L:

Left Logical Equivalence if A andB are logically equivalent and ~ C,
thenB ~ C
Cautious Monotony if A~ BandAnr~ C,thenAANBr~ C

We have the following theorem [64].

Theorem 26 A binary relation~ on L is a preferential inference relation if and only if
it satisfies Left Logical Equivalence, Right Weakening,aRigfty, And, Or and Cautious
Monotony.

We note that many other properties of binary relations weresidered in an effort to
formalize the concept of nonmonotonic inference. Gabbdy §ked about the weakest
set of conditions a binary relation should satisfy in oraebé a nonmonotonic inference
relation. The result of his studies as well as of Makinsor] ¥8s the notion of a cu-
mulative inference relation. A semantic characterizatiboumulative relations exists but
there are disputes whether cumulative relations are intteedght ones. Thus, we do not
discuss cumulative inference relations here.

Narrowing the class of orders in preferential models yialdsclasses of preferential
relations. One of these subclasses is especially impddanbnmonotonic reasoning. A
strict partial order< on a setP is rankedif there is a function/ from P to ordinals such
that for everyr,y € P, x < y ifand only if i(z) < I(y).

Definition 15 A preferential mode{WV, v, <) is rankedif < is ranked.

We will call inference relations defined by ranked modalional. It is easy to verify
that rational inference relations satisfy the propertirafional Monotony

Rational Monotony if ANBt CandA ¢ —B, thenA & C.

The converse is true, as well. We have the following theor@8h [

Theorem 27 An inference relation is rational if and only if it is prefergal and satisfies
Rational Monotony

1.5.2 Default Conditionals

Default conditionals are meant to model defeasible statésrseich asniversity professors
normally give lecturesFormally, adefault conditionais a syntactic expressioA ~ B,
with an intuitive reading “ifA thennormally B”. We denote the operator constructing
default conditionals with the same symbolwe used earlier for inference relations. While
it might be confusing, there are good reasons to do so andvitielyecome apparent as
we proceed. It is important, however, to keep in mind that me case,~ stands for
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a constructor of syntactic (language) expressions, anlderother it stands for a binary
(inference) relation.

Given a setK of default conditionals, when is a default conditional~ B a conse-
quence ofK? When is a formulad a consequence df? Somewhat disappointingly no
single commonly accepted answer has emerged. We will naeweane of the approaches
proposed that received significant attention. It is basethemotion of arational closure
developed in [67, 68] and closely related to the system Z][104

Let K be a set of default conditionals. The set of all default comdals implied byK
should be closed under some rules of inference for conditsorFor instance, we might
require that ifA and B are logically equivalent andl ~ C belongs to a closure ok,

B ~ C belongs to the closure d&, as well. This rule is nothing else bléeft Logical
Equivalenceexcept that now we view expressioAs~ B as default conditionals and not
as elements of an inference relation. In fact, modulo thisespondence (a conditional
A r~ B versus an elememt ~ B of an binary relation), several other rules we discussed
in the previous section could be argued as possible cardidatuse when defining a
closure ofK.

Based on this observation, we postulate that a closui€ ehould be a set of condi-
tionals that corresponds to an inference relation. Thetopreis, which inference relation
extendingK should one adopt ahe closure of K. If one is given a preferential model
whose inference relation extends this inference relation might be considered as the clo-
sure of K. This is not a satisfactory solution as, typically, all werdés K and we would
like to determine the closure on the basisfofonly. Another answer might be the inter-
section of all preferential relations extendiAg The resulting relation does not in general
satisfyRational monotonya property that arguably dflona fidenonmonotonic inference
relations should satisfy. Ranked models determine inferenlations that are preferen-
tial and, moreover, satisfiRational Monotony However, the intersection of all rational
extensions of” coincides with the intersection of all preferential exiens and so, this
approach collapses to the previous one.

If the closure ofK is not the intersection of all rational extensions, perhiafs a
specific rational extension, if there is a natural way to detine. We will focus on this
possibility now. Lehmann and Magidor [68] introduce a frtirdering on rational exten-
sions of a set of conditional closuresfgt In the case when this order has a least element,
they call this element theational closureof K. They say thatd ~ B is a rational conse-
quence ofK if A ~ B belongs to the rational closure &f. They say thatd is a rational
consequence K if the conditionaltrue ~ A is in the rational closure oK.

There are sets of conditionals that do not have the ratidosilice. However, [68] show
that in many cases, including the case wli€is finite, the rational closure exists. Rather
than discuss the ordering of rational extensions that liedehe definition of a rational
closure, we will now discuss an approach which characterizen many cases when it
exists.

A formula A is exceptional for(, if true ~ —A belongs to the preferential extension
of K, that is, if—A is true in every minimal world of every preferential modeligf A
default conditional is exceptional fdt, if its antecedent is exceptional féf. By E(K)
we denote the set of all default conditionalgiinthat are exceptional fak .

Given K, we define a sequence of subsetdohs follows:Cy = K. If r = n+ 1
is a successor ordinal, we defitg = E(C,). If 7 is a limit ordinal, we define’; =

Un<7’ C’]'
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The rankr(A) of a formulaA is the least ordinat such that4 is not exceptional for
C.. If for every ordinalr, A is exceptional folC';, A has no rank.

A formula A is inconsistentwith K if for every preferential model of and every
world w in the modelw = —A.

A set of conditionald( is admissibldf all formulas that have no rank are inconsistent
for K. Admissible sets of default conditionals include all firsts.

Theorem 28 If K is admissible, then its rational closui€ exists. A default conditional
A~ B € K ifand only if A A =B has no rank, or ifA and A A =B have ranks and
r(A) < r(AA-B).

1.5.3 Discussion

Properties of inference relations can reveal differeneés&en nonmonotonic formalisms.
Earlier in this section, we showed how circumscription ofad# logic can be used to
specify inference relations. The relation determined bgurnscription is a special case of
a preferential inference relation and so, satisfies allgntigs of preferential relations. The
situation is different for the inference relation definedaset of defaults. Let us recall that
B can be inferred fromA with respect to a seb of defaults,A ~p B, if B is in every
extension of the default theoyp, {A}).

The inference relatior-p, whereD consists of normal defaults in general does not
satisfy the propertie®r andCautious MonotonyFor instance, leb = {A:C/C, B:CIC}.
Then we haved ~p C andB ~p C, butnotA v B Fp C. The reason, intuitively, is
that none of the defaults can be applied if only the disjumctf prerequisites is given.

An example for the violation of cumulativity due to Makinsf#9] is given by D =
{T:AIA, AV B:=Al-A}. We haveT ~p AandthusT ~p AV B, butnotAv B Fp A.
The reason is that the default thedfy, { A v B}) has a second extension containing.

Contrary to normal defaults, supernormal defaults satist Cautious Monotongand
Or [35], as they happen to be preferential.

Finally, we conclude this section with a major unresolvedbtgm of nonmonotonic
reasoning. Nonmonotonicity can be achieved through fixedtmmnstructions and this
approach leads to such formalisms as default and autoeiisiegics. On the other hand,
interesting nonmonotonic inference relations can be defiméerms of preferential mod-
els. What is missing is a clear link between the two approsachAa open question is: can
nonmonotonic inference relations defined by default logicother fixed point system) be
characterized in semantic terms along the lines of prefialeanodels?

1.6 Further Issues and Conclusion

In this section we discuss the relationship between the magjproaches we presented
earlier. We first relate default logic and autoepistemiddd@ect. 1.6.1), then default
logic and circumscription (Sect. 1.6.2). Finally, we giv@rgers to some other approaches
which we could not present in more detail in this chapter (Ske6.3).
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1.6.1 Relating Default and Autoepistemic Logics

A basic pattern of nonmonotonic reasoning ist the absence of any information contra-
dicting B, infer B". Normal defaults are designed specifically with this redasg pattern
in mind: it is modeled by the normal defauJ%B. McDermott and Doyle [91] suggested
that in modal nonmonotonic systems this reasoning pattesold be represented by the
modal formula—K—B D B (or using a common abbreviatioaW for —K—, which can
be read as “consistent” or “possible’ B > B). Even though the modal nonmonotonic
logic of [91] was found to have counterintuitive propertigsl was abandoned as a knowl-
edge representation formalism, the connection betweefaaldeB—B and a modal formula
MB D B was an intriguing one and prompted extensive investigati@ince autoepis-
temic logic emerged in the mid 1980s as the modal nonmomotogic of choice, these
investigations focused on relating default and autoemistéogics.

Building on the suggestion of McDermott and Doyle, Konol[§&] proposed to en-
code an arbitrary default

_A:Bl,...,B}C
B C

with a modal formula

d

T(d) = KAN-K-Bi A...AN=K-B; > C,

and to translate a default theaty= (D, W) into a modal theor{(A) = WU{T(d): d €
D}.

The translation seems to capture correctly the intuitiaelieg of a default: ifA is
known and allB; are possible (none is contradicted or inconsistent) thiem . There is
a problem, though. Let us consider a default thetry: ({d}, 0), where

A: B

Konolige's translation represenfs as a modal theory

Using methods we presented earlier in this chapter one aéfiy tleat A has exactly one
extensionCn((), while T(A) hastwo expansionsCngs () andCngs({A}). It follows
that Konolige’s translation does not yield a connectiomigein the two logics that would
establish a one-to-one correspondence between extermidnsxpansions. Still several
interesting properties hold.

First, as shown in [81], for prerequisite-free default ties Konolige’s translation
does work! We have the following result.

Theorem 29 Let A be a default theory such that each of its defaults is prestpifree.
Then, a propositional theor¥ is an extension oA if and only if the belief set determined
by E N L (cf. Proposition 14) is an expansion {A). Conversely, a modal theody’ is
an expansion of'(A) if and only if the modal-free part af’, £’ N £, is an extension of
A.
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Second, under Konolige’s translation, extensions are ewppexpansions (although,
as our example above shows — the converse fails in general).

Theorem 30 Let A be a default theory. If a propositional theofy is an extension o\,
thenCngs(F) is an expansion df' (A).

Despite providing evidence that the two logics are relatéiinately, Konolige’s trans-
lation does not properly match extensions with expansidhe.reason boils down to a fun-
damental difference between extensions and expansiorb.eBtensions and expansions
consist only of formulas that are justified (“grounded”) iefault and modal theories, re-
spectively. However, expansions allow for self-justifioat while extensions do not. The
difference is well illustrated by the example we used befdrbae belief set determined
by {A} (cf. Proposition 14) is an expansion of the thedly A A ~K—-B D> A}. In
this expansionA is justified through the formul& A A ~K—-B > A by means of air-
cular argument relying on believing id (since there is no information contradictirg)
the second premise needed for the argumehi;- B, holds). Such self-justifications are
not sanctioned by extensions: in order to apply the defég@ we must firstindepen-
dentlyderive A. Indeed, one can verify that the thedty({A}) is not an extension of
({2521.0).

'?his discussion implies that extensions and expansiortsiegifferent types of non-
monotonic reasoning. As some research suggests defaidtisogbout the modality of
“knowing” (no self-supporting arguments) and autoepistelogic is about the modality
of “believing” (self-supporting arguments allowed) [722].

Two natural questions arise. Is there a default logic capate of expansions, and is
there an autoepistemic logic counterpart of extensiong?afkwer in each case is positive.
[34] developed a uniform treatment of default and autoepit logics exploiting some
basic operators on possible-world structures that candmraged with default and modal
theories. This algebraic approach (developed earlier irerabstract terms in [33]) endows
each logic with both expansions and extensions in such alvedyttey are perfectly aligned
under Konolige's translation. Moreover, extensions ofadéiftheories and expansions
of modal theories defined by the algebraic approach of [3#jodde with the original
notions defined by Reiter and Moore, respectively, whileaggions of default theories
and extensions of modal theories defined in [34] fill in thegg@pcomplete the picture.

A full discussion of the relation between default and auistemic logic is beyond the
scope of this chapter and we refer to [34] for details. Siryilave only briefly note other
work attempting to explain the relationship between the liwgics. Most efforts took as
the starting point the observation that to capture a defaglt within a modal system,
a different modal nonmonotonic logic or a different tratisia must be used. Konolige
related default logic to aersionof autoepistemic logic based on the notion afteongly
grounded expansiof6l]. Marek and Truszc#ski [82] proposed an alternative trans-
lation and represented extensions as expansions in arcertalal nonmonotonic logic
constructed following McDermott [90]. Truszdagki [128] found that the @del transla-
tion of intuitionistic logic to modal logic S4 could be usemlttanslate the default logic
into a nonmonotonic modal logic S4 (in fact, he showed the¢isé modal nonmonotonic
logics could be used in place of nonmonotonic S4).

Gottlob [52] returned to the original problem of relatindaldt and autoepistemic log-
ics with their original semantics. He described a mappiagdtating default theories into
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modal ones so that extensions correspond precisely to sixpen This translation is not
modular. The autoepistemic representation of a defauttryhéepends on the whole the-
ory and cannot be obtained as the union of independent &téorsd of individual defaults.
Thus, the approach of Gottlob does not provide an autoepisteeading of an individual
default. In fact, in the same paper Gottlob proved that a favdranslation from default
logic with the semantics of extensions to autoepistemiaclegth the semantics of ex-
pansions does not exist. In conclusion, thenedsnodal interpretation of a default under
which extensionsvould correspond texpansions

1.6.2 Relating Default Logic and Circumscription

The relationships between default logic and circums@ipts well as between autoepis-
temic logic and circumscription have been investigated Iyimber of researchers [42,
43, 58, 72, 62]. Imielinski [58] points out that even normafallt rules with prerequi-
sites cannot not be translated modularly into circumsioniptThis argument applies also
to autoepistemic logic and thus circumscription cannot utardly capture autoepistemic
reasoning [96].

On the other hand, circumscription is closely related tagaaisite-free normal de-
faults. For example, it is possible to capture minimal meds#la set of formulas using
such rules. The idea is easy to explain in the propositicasd cConsider a set of formulas
T and sets”? andZ of minimized and varied atoms (0-ary predicates), respelgtiand let
R be the set of fixed atoms (those notfror Z). Now <73#-minimal models ofT" can be
captured by the default theofWIIN(P) U FIX(R),T) where the set of defaults consists
of

MIN(P) = {T;A\Aep}
T:-A T:A
FIX(R) = {—~|A€R}U{—"|AeR}

Now a formulaF is true in every<*:Z-minimal model of T" if and only if F is in every
extension of the default theofMIN(P) U FIX(R),T). The idea here is that defaults
MIN(P) minimize atoms inP and default&1X(R) fix atoms inR by minimizing each
atom and its complement.

The same approach can be used for autoepistemic logic asqprsite-free default
theories can be translated to autoepistemic logic as eqaan Section 1.6.1. However,
capturing first-order circumscription is non-trivial ariibtresults depend on the treatment
of open defaults (or quantification into the scopefoperators in the case of autoepis-
temic logic). For example, Etherington [42] reports resalh capturing circumscription
using default logic in the first-order case but without angdipredicates and with a finite,
fixed domain. Konolige [62] shows how to encode circumsmipin the case of non-finite
domains using a variant of autoepistemic logic which allowantification into the scope
of K operators.

1.6.3 Further Approaches

Several other formalizations of nonmonotonic reasoningetseen proposed in the liter-
ature. Here we give a few references to those we consider malesant but could not
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handle in more detail.

e Possibilistic logics [38] assign degrees of necessity amskipility to sentences.
These degrees express the extent to which these senterdesliaved to be nec-
essarily or possibly true, respectively. One of the maireathges of this approach
is that it leads to a notion of graded inconsistency whicbvedl non-trivial deduc-
tions to be performed from inconsistent possibilistic kienge bases. The resulting
consequence relation is nonmonotonic and default ruledearonveniently repre-
sented in this approach [10].

e Defeasible logic, as proposed by Nute [101] and further ldgesl by Antoniou
and colleagues [4, 3], is an approach to nonmonotonic réagdrased on strict
and defeasible rules as well as defeaters. The latter gpeatptions to defeasible
rules. A preference relation among defeasible rules is tsédeak ties whenever
possible. An advantage of defeasible logic is its low comxipfe inferences can be
computed very efficiently. On the other hand, some arguattlyitive conclusions
are not captured. The relationship between defeasible lagd prioritized logic
programs under well-founded semantics is discussed in [24]

e Inheritance networks are directed graphs whose nodesseagreropositions and
a directed (possibly negated) link between two nodesnd B stands for* As are
normally (not) Bs” (some types of networks also distinguish between strict and
defeasible links). The main goal of approaches in this asda capture the idea
that more specific information should win in case of a confli&everal notions
of specificity have been formalized, and correspondingonatiof inference were
developed. Reasoning based on inheritance networks isarstonic since new,
possibly more specific links can lead to the retraction ofrfer conclusions. [56]
gives a good overview.

e Several authors have proposed approaches based on rarkeldge bases, that
is, sets of classical formulas together with a total preoatethe formulas [21, 9].
The preorder represents preferences reflecting the wikisg to stick to a formulain
case of conflict: if two formulagl and B lead to inconsistency, then the strictly less
preferred formula is given up. If they are equally preferithen different preferred
maximal consistent subsets (preferred subtheories iretha@rology of [21]) of the
formulas will be generated. There are different ways to édfire preferred subthe-
ories. Brewka [21] uses a criterion based on set inclusiemf&hat and colleagues
[9] investigate a cardinality based approach.

¢ When considering knowledge-based agents it is naturaktmas that the agent’s be-
liefs are exactly those beliefs which follow from the asstiopthat the knowledge-
base isall that is believed. Levesque was the first to capture this natidis logic
of only-knowing[69]. The main advantage of this approach is that beliefskmEan
analyzed in terms of a modal logic without requiring addiibmeta-logical notions
like fixpoints and the like. The logic uses two modal opemstdf for belief and
O for only knowing. Levesque showed that his logic capturdsepistemic logic.
In [65] the approach was generalized to capture defaultlagiwell. [66] presents
a sound and complete axiomatization for the propositioaaec Multi-agent only
knowing is explored in [53].
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e Formal argument systems (see for instance [76, 124, 10€04,29, 1, 130, 12])
model the way agents reason on the basis of arguments. Inaopneaches argu-
ments have internal structure, in others they remain atistrdities whose structure
is not analyzed further. In each case a defeat relation araagugmnents plays a
central role in determining acceptable arguments and &alolepbeliefs. The ap-
proaches are too numerous to be discussed here in more de¢aitfer the reader
to the excellent overview articles [29] and [108].

With the above references to further work we conclude thés\dew chapter on formaliza-
tions of general nonmonotonic reasoning. As we said in tlrediuction, our aim was not
to give a comprehensive overview of all the work that has likmre in the area. We de-
cided to focus on the most influential approaches, thus groyithe necessary background
for several of the other chapters of this handbook. Inddexlreader will notice that the
topic of this chapter pops up again at various places in ik b— with a different, more
specialized focus. Examples are the chapters on Answer(Sképter 7), Model-based
Problem Solving (Chapter 10), and the various approachesagpning about action and
causality (Chapters 16 — 19).
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