Answer Sets: From Constraint Programming Towards Qualitative Optimization

Gerhard Brewka

brewka@informatik.uni-leipzig.de

Universität Leipzig

Outline

- 1. Motivation
- 2. LPODs and optimization programs
- 3. Generic examples:
 - Abduction and diagnosis
 - Inconsistency handling
 - Solution coherence
- 4. A preference description language
- 5. Conclusions

The success of ASP

Main factors:

- availability of interesting implementations: dlv, Smodels, ASSAT ...
- shift of perspective from theorem proving to constraint programming/model generation
- many interesting applications in planning, reasoning about action, configuration, diagnosis, space shuttle control, ...

Natural next step: qualitative optimization brings in a lot of new interesting applications

Formalism I

LPOD: finite set of rules of the form:

 $C_1 \times \ldots \times C_n \leftarrow A_1, \ldots, A_m, \operatorname{not} B_1, \ldots, \operatorname{not} B_k$

 C_i, A_j, B_l ground literals. if body then some C_j must be true, preferably C_1 , if impossible then C_2 , if impossible C_3 , etc.

- Answer sets satisfy rules to different degrees.
- Use degrees to define global preference relation on answer sets.
- Different options how to do this (inclusion based, cardinality based etc.).

Formalism II

Optimization programs

- answer set generation independent of quality assessment
- P_{gen} generates answer sets, preference program P_{pref} compares them
- P_{pref} uses rules of the form

$$C_1 > \ldots > C_k \leftarrow body$$

 C_i boolean combination built using \lor , \land , \neg , not. \neg in front of atoms, not in front of literals only.

Abduction and diagnosis

K program, H hypotheses, O observations E explanation of O (dlv view) iff E minimal among $\{H' \subseteq H \mid S \in AS(H' \cup K), O \subseteq S, S \text{ consistent}\}$ corresponding LPOD $P_{abd}(K, H, O)$: $K \cup \{\leftarrow \operatorname{not} o \mid o \in O\}$ $\bigcup \{ \neg ass(h) \times ass(h) \mid h \in H \}$ $\cup \{h \leftarrow ass(h) \mid h \in H\}.$

E explanation iff *S* consistent answer set of $P_{abd}(K, H, O)$ and $E = \{h \in H \mid ass(h) \in S\}$

Consistency based diagnosis

- program P describes normal behavior using ab-predicates
- diagnosis minimal subset C' of components C such that

{ab(c) | c ∈ C'} ∪ {¬ab(c) | c ∈ C \ C'}
explains observations O
corresponding LPOD P_{cd}(P, C, O):
P∪{← not o | o ∈ O}∪{¬ab(c) × ab(c) | c ∈ C}

Inconsistency handling

- program P, possibly inconsistent; consistency restoring rules R
- names N_P and N_R for rules in P and R
- generate weakening of $P \cup R$ by replacing

 $head \leftarrow body$ with $head \leftarrow body, r_i$

where r_i rule's name

- add $\{r \times \neg r \mid r \in N_P\} \cup \{\neg r \times r \mid r \in N_R\}$
- minimal set of *P*-rules turned off, minimal set of *R*-rules turned on
- meta-preferences may express: *P*-rules to be neglected only if necessary

Solution coherence

- assume solution S for problem P was computed
- problem changes slightly to P'
- not interested in arbitrary solution of P', but solution as close as possible to S.
- distance measure based on symmetric difference: ($A \Delta B = A \setminus B \cup B \setminus A$)

 $S_1 \leq_S S_2 iff S_1 \Delta S \subseteq S_2 \Delta S$

corresponding preference program:

 $\{a > \operatorname{not} a \mid a \in S\} \cup \{\operatorname{not} a > a \mid a \notin S\}.$

Meeting scheduling

 $part(p_1, m_1)$

 $part(p_3, m_2)$ $part(p_2, m_1) \quad part(p_3, m_3)$ $part(p_2, m_2) = part(p_4, m_3)$

 $unav(p_1, s_4)$ $unav(p_2, s_4)$ $unav(p_4, s_2)$

Meetings need 1 slot (using cardinality constraints):

 $1{slot(M,S): slot(S)}1 \leftarrow meeting(M)$

Constraints:

part(P, M), slot(M, S), unav(P, S) \leftarrow \leftarrow $part(P, M), part(P, M'), M \neq M',$ slot(M, S), slot(M', S)

Meeting scheduling, ctd.

A solution: $slot(m_1, s_1), slot(m_2, s_2), slot(m_3, s_3)$

 p_4 becomes unavailable at s_3 : $unav(p_4, s_3)$

Preference rules: $slot(m_1, s_1) > not slot(m_1, s_1),$ $slot(m_2, s_2) > not slot(m_2, s_2), \dots$

Former solution invalid. Some new solutions:

 $S_1: slot(m_1, s_1), slot(m_2, s_2), slot(m_3, s_4)$ $S_2: slot(m_1, s_2), slot(m_2, s_1), slot(m_3, s_4)$ $S_3: slot(m_1, s_3), slot(m_2, s_2), slot(m_3, s_1)$

inclusion based strategy: S_1 better than S_2 . cardinality based strategy: S_1 better than S_2 and S_3 .

Preference description language

- variety of existing preference combination strategies
- want to combine them in flexible ways
- *PDL* is a language for doing this
- consists of preference rules and (possibly nested) expressions

 $(comb \ e_1 \dots e_n)$

where *comb* is a combination strategy, e_i an appropriate *PDL* expression.

Generalized preference rules

$$C_1: p_1 > \ldots > C_k: p_k \leftarrow body$$

 C_i boolean combinations p_i integer penalties satisfying $p_i < p_j$ whenever i < j.

$$C_1 > C_2 > \ldots > C_k \leftarrow body$$

abbreviates

 $C_1: 0 > C_2: 1 > \ldots > C_k: k-1 \leftarrow body$

Answer Set Optimization – p.13/20

Syntax of PDL

 PDL^p and PDL expressions: 1. r is preference rule $\Rightarrow r \in PDL^p$, 2. $e_1, \ldots, e_k \in PDL^p \Rightarrow (psum \ e_1 \ldots \ e_k) \in PDL^p$, 3. $e \in PDL^p \Rightarrow e \in PDL$, 4. $e_1, \ldots, e_k \in PDL^p \Rightarrow$ $(inc \ e_1 \dots e_k), (rinc \ e_1 \dots e_k), (card \ e_1 \dots e_k)$ and $(rcard e_1 \dots e_k) \in PDL$, 5. $e_1, \ldots, e_k \in PDL \Rightarrow$ $(pareto e_1 \dots e_k)$ and $(lex e_1 \dots e_k) \in PDL$.

Penalties and rule semantics

- 1. $prex = C_1: p_1 > \ldots > C_k: p_k \leftarrow body$
 - S satisfies body and at least one C_i : $pen(S, prex) = p_j$, where $j = min\{i \mid S \models C_i\}$, otherwise: pen(S, prex) = 0.
- 2. $prex = (psum \ e_1 \dots e_k)$ $pen(S, prex) = \sum_{i=1}^k pen(S, e_i).$
- 3. Ord(prex) preorder associated with prex, r rule: $(S_1, S_2) \in Ord(r)$ iff $pen(S_1, r) \leq pen(S_2, r)$.

Complex expressions

 \geq_i preorder (>_i partial order) represented by e_i , i, j range over $\{1, \ldots, k\}, P_S^p = \{j \mid pen(S, e_j) = p\}$

- $(S_1, S_2) \in Ord(pareto \ e_1 \dots e_k)$ iff $S_1 \ge_j S_2$ for all j.
- $(S_1, S_2) \in Ord(lex \ e_1 \dots e_k)$ iff $S_1 \ge_j S_2$ for all j or $S_1 >_j S_2$ for some j, and for all i < j: $S_1 \ge_i S_2$.
- $(S_1, S_2) \in Ord(inc \ e_1 \dots e_k)$ iff $P_{S_1}^0 \supseteq P_{S_2}^0$.
- $(S_1, S_2) \in Ord(rinc \ e_1 \dots e_k)$ iff $pen(S_1, e_j) = pen(S_2, e_j)$ for all j or $P_{S_1}^p \supset P_{S_2}^p$ for some p and $P_{S_1}^q = P_{S_2}^q$ for q < p.

Complex expressions, ctd.

- $(S_1, S_2) \in Ord(card \ e_1 \dots e_k)$ iff $|P_{S_1}^0| \ge |P_{S_2}^0|.$
- $(S_1, S_2) \in Ord(rcard \ e_1 \dots e_k)$ iff $|P_{S_1}^p| = |P_{S_2}^p|$ for all p or $|P_{S_1}^p| > |P_{S_2}^p|$ for some p, and $|P_{S_1}^q| = |P_{S_2}^q|$ for all q < p.
- $(S_1, S_2) \in Ord(psum e_1 \dots e_k)$ iff $\sum_{i=1}^k pen(S_1, o_i) \leq \sum_{i=1}^k pen(S_2, o_i).$

Special cases

- 1. preference progs $\{r_1, \ldots, r_k\}$: $(pareto r_1 \ldots r_k)$
- 2. ranked preference progs: $(lex (pareto r_{1,1} \dots r_{1,k_1}) \dots (pareto r_{n,1} \dots r_{n,k_n}))$
- 3. cardinality and inclusion based combinations: use *rinc* and *rcard*
- 4. weak constraints:
 - $\leftarrow body. [w]: \text{ use } \top:w \leftarrow body \text{ with } psum \\ \leftarrow body. [w:l]: \text{ group wrt. priority level } l: \\ (lex (psum r_{1,1} \dots r_{1,k_1}) \dots (psum r_{n,1} \dots r_{n,k_n}))$
- 5. $minimize\{a_1 = w_1, \dots, a_k = w_k\}$ statements: single statement: $(psum \ a_1:w_1 \dots a_k:w_k)$ sequence: $(lex(psum \dots)...(psum \dots))$

Tester programs

- T(P, M, prex) based on generating program P, current answer set M, compilation of prex
- generates answer sets strictly better than M
- generate and improve optimization strategy
- compilation example $(lex \ e_1 \dots e_k)$:

 $geq_i \leftarrow geq_{i.1}, \dots, geq_{i.k}$ $geq_i \leftarrow better_i$ $better_i \leftarrow better_{i.1}$ $better_i \leftarrow geq_{1.1}, better_{i.2}$

 $better_i \leftarrow geq_{i,1}, \dots geq_{i,k-1}, better_{i,k}$

Conclusion

- ASP: successful declarative problem solving paradigm
- optimization facilities greatly increase applicability
- context dependent preferences among formulas flexible and powerful
- applications in diagnosis, planning, inconsistency, configuration with weak constraints, ...
- foundations of a preference description language for specifying flexible optimization strategies