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Abstract

In this paper we introduce dialectical frameworks, a
powerful generalization of Dung-style argumentation
frameworks where each node comes with an associated
acceptance condition. This allows us to model differ-
ent types of dependencies, e.g. support and attack, as
well as different types of nodes within a single frame-
work. We show that Dung’s standard semantics can
be generalized to dialectical frameworks, in case of sta-
ble and preferred semantics to a slightly restricted class
which we call bipolar frameworks. We show how accep-
tance conditions can be conveniently represented using
weights respectively priorities on the links and demon-
strate how some of the legal proof standards can be
modeled based on this idea.

Motivation
Formal models of argumentation have recently received
considerable interest across different AI communities,
like nonmonotonic reasoning, multi-agent systems and
legal reasoning. Argumentation frameworks provide a
particular way of defining nonmonotonic consequences
by constructing and comparing the arguments pro and
con a certain position. Particularly successful and
widely used are the abstract argumentation frameworks
introduced by Dung (1995). These frameworks basi-
cally are graphs whose nodes represent abstract argu-
ments. The content of these arguments is not further
analyzed. The links in the graphs represent attack re-
lations. Intuitively, an argument is accepted unless it is
attacked by another accepted argument.

Dung defined several semantics formalizing different
intuitions about which arguments to accept on the ba-
sis of a given framework, most notably the grounded,
preferred and stable semantics.

Dung frameworks are very useful as analytical tools
for comparing various forms of argumentation. They
are also commonly used as target systems for transla-
tions from less abstract formalisms. These formalisms
then inherit, via the translation to Dung frameworks,
a semantics. A number of researchers in argumenta-
tion, like Wyner, Bench-Capon, and Dunne (2009) or
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Prakken (2009) followed this approach and built spe-
cific argumentation systems based on some kind of de-
feasible and undefeasible rules. Rather than directly
defining a semantics for their systems, they translated
them to Dung frameworks.

In spite of their success, it is obvious that Dung
frameworks lack certain features which are common
in almost every form of argumentation to be found in
practice. One such feature we focus on in this paper
are proof standards. The legal reasoning literature is
full of discussions of standards like scintilla of evidence,
preponderance of evidence, beyond reasonable doubt etc.
Also in everyday reasoning proof standards play an es-
sential role: in situations involving risk we obviously
apply higher standards than in cases where there is not
much to loose. Excellent overviews of some recent for-
mal treatments can be found in (Atkinson and Bench-
Capon 2007) and (Gordon and Walton 2009).

The work presented here started as an attempt to
add proof standards to Dung frameworks. Proof stan-
dards in legal reasoning are domain independent. They
are defined based on certain domain independent prop-
erties of the arguments pro and con a certain position.
In this paper we will first introduce the more abstract
notion of an acceptance condition and add it to Dung
frameworks. Acceptance conditions cover any function
determining the status of a node based on the status
of its parent nodes. This includes domain dependent
conditions and thus goes beyond the handful of well-
known legal standards. The latter will then be intro-
duced based on certain properties/types of the links
in our graphs. Acceptance conditions allow us to in-
troduce different node and link types. The influence
a node may have on another node is entirely specified
through the acceptance condition. So, in contrast to
Dung frameworks where links represent one particular
type of relationship, namely attack, and where nodes
are accepted unless attacked, our frameworks allow a
variety of different dependencies to be represented in a
flexible way1: we can have nodes which are not accepted
unless supported, and corresponding supporting links.

1For a node with n incoming links the number of possible
acceptance conditions will be 22n

.



We also can have links of different strength, and even
links which support/attack a node sometimes, that is,
depending on the context. The following slogan char-
acterizes our approach:

abstract dialectical frameworks =
dependency graphs + acceptance conditions

An important aspect of the work we are going to present
here is the generalization of the standard Dung seman-
tics. It turns out that grounded semantics can indeed
be generalized to arbitrary dialectical frameworks. For
stable and preferred semantics a notion of support and
attack is needed which is present in a somewhat re-
stricted, but still powerful and flexible class of frame-
works which we call bipolar.

Although we started from argumentation frame-
works, we decided to change terminology. In Dung
frameworks an argument is accepted unless it is at-
tacked by an accepted node. As mentioned above,
in our frameworks it will depend entirely on the ac-
ceptance condition whether a node is accepted or not.
We still can have nodes which behave like arguments
– Dung frameworks, after all, are special cases of our
frameworks – but we also may have nodes which are
rejected unless they are supported by some accepted
node.

To reflect this higher generality we chose the term
dialectical frameworks. In classical philosophy, dialec-
tic is a form of reasoning based on the exchange of
arguments and counter-arguments, advocating propo-
sitions (theses) and counter-propositions (antitheses).
This describes nicely what our frameworks can be used
for. Also, following the Carneades terminology (Gor-
don, Prakken, and Walton 2007) we call the nodes in
our graphs statements (or positions) rather than argu-
ments.

The outline of the paper is as follows. We first give
the relevant background on Dung systems. We then
go on to present the general approach and define well-
founded (alias grounded) semantics for it. The sub-
sequent section introduces bipolar frameworks, that is,
frameworks whose links either support or attack a node,
and presents stable and preferred semantics for these.
We then show how acceptance conditions can conve-
niently be represented using weights. We apply this
idea and formalize several legal proof standards which
go back to the work by Farley and Freeman (1995) and
are well known in legal reasoning. We finally discuss
proof standards based on qualitative preferences among
links and the complexity of major reasoning tasks. We
conclude with a discussion of related work which in
particular includes bipolar argumentation frameworks
(Cayrol and Lagasquie-Schiex 2009).

Background
We assume some familiarity with Dung-style abstract
argumentation (Dung 1995) and just recall the essen-
tial definitions. An argumentation framework (AF, for
short) is a pair A = (AR, attacks) where AR is a set

of arguments, and attacks is a binary relation on AR
(used in infix in prose). An argument a ∈ AR is ac-
ceptable with respect to a set S of arguments, if each
argument b ∈ AR that attacks a is attacked by some
b′ ∈ S. A set S of arguments is conflict-free, if there
are no arguments a, b ∈ S such that a attacks b, and
S is admissible, if in addition each argument in S is
acceptable wrt. S.

Dung defined (among others) the following three se-
mantics for an AF A = (AR, attacks):

• The grounded extension of A is the least fixpoint of
the operator FA : 2AR → 2AR where

FA(S) = {a ∈ AR | a is acceptable wrt. S}.

• A preferred extension of A is a maximal (wrt. ⊆)
admissible set of A.

• A stable extension of A is a conflict-free set of argu-
ments S which attacks each argument not belonging
to S.

The unique grounded extension is a subset of the in-
tersection of all preferred extensions, and each stable
extension is a preferred extension, but not vice versa.
While the grounded and some preferred extension are
guaranteed to exist (the latter in the finite case), Amay
have no stable extension.

The general framework
We now define abstract dialectical frameworks (ADFs)
formally. An ADF is a directed graph whose nodes rep-
resent statements or positions which can be accepted
or not. The links represent dependencies: the status
of a node s only depends on the status of its parents
(denoted par(s)), that is, the nodes with a direct link
to s. In addition, each node s has an associated ac-
ceptance condition Cs specifying the exact conditions
under which s is accepted. Cs will be a function assign-
ing to each subset of par(s) one of the values in, out .
Intuitively, if for some R ⊆ par(s) we have Cs(R) = in,
then s will be accepted provided the nodes in R are
accepted and those in par(s) \R are not accepted.

Definition 1 An abstract dialectical framework is a
tuple D = (S,L,C) where

• S is a set of statements (positions, nodes),
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) →
{in, out}, one for each statement s. Cs is called ac-
ceptance condition of s.

Example 1 This is a variant of a similar example by
Gordon, Prakken, and Walton (2007). A person is
innocent, unless she is a murderer. A killer is a mur-
derer, unless she acted in self-defense. There must be
evidence for self-defense, for instance a witness who is
not known to be a liar.

The dependency structure of the example can be rep-
resented as follows:
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Let’s assume w and k are known and l is not known,
that is Cw and Ck are (constant functions) in, Cl is out.
The acceptance conditions for the remaining nodes are:
Cs(R) = in iff w ∈ R and l 6∈ R; Cm(R) = in iff k ∈ R
and s 6∈ R; Ci(R) = in iff R = ∅. The shaded nodes
represent the nodes which are in when values are prop-
agated according to the chosen acceptance conditions.

Let us first check how Dung argumentation frame-
works fit into the picture. AFs have attacking links only
and a single type of nodes. This can easily be captured
in an ADF. Let A = (AR, attacks) be an argumenta-
tion framework. The associated dialectical framework
DA = (AR, attacks, C) uses, for all nodes s ∈ AR, the
following acceptance condition: Cs(R) = in iff R = ∅,
Cs(R) = out otherwise.

Interestingly, we can also represent a normal logic
program G as an associated ADF DG. The nodes of DG

are the atoms in the program. There is a link from atom
a to atom b whenever b appears, positive or negated, in
the body of some rule with head a. Finally, for an atom
a, Ca is defined as follows (for R ⊆ par(a)): Ca(R) = in
if there exists a rule

a← b1, . . . , bk, not c1 . . . , not cm

in G, such that {b1, . . . , bk} ⊆ R and {c1 . . . , cm}∩R =
∅; and Ca(R) = out , otherwise.

The reader will have noticed that our acceptance con-
ditions are boolean functions (we chose in and out as
values rather than true and false because we make no
claims about the truth of the involved statements2).
Boolean functions can conveniently be represented us-
ing propositional formulas. An ADF can thus also be
viewed as a graph such that each node s is annotated
with a propositional formula F (s) built from parent
nodes of s. For instance, the formulas representing the
acceptance condition of a node s in a Dung-style ADF
are of the form ¬r1 ∧ . . . ∧ ¬rn, where r1, . . . , rn are
all attackers of s. Let us mention at this point, that
the acceptance conditions are not intended to tell us
anything about the contents of the statements3 which
remain fully abstract. Instead, the acceptance condi-
tions just explain the relationship between statements.

We now turn to the semantics of dialectical frame-
works. We start with the notion of a model. Intuitively,
a model M is a set of statements satisfying the accep-
tance condition of each node:

2Three-valued labellings with in, out and undec, the
latter representing undecided, have been used to compute
extensions of argumentation frameworks, see (Modgil and
Caminada 2009) for an overview. Although we use two of
these labels, we use them for entirely different purposes,
namely to define the notion of a model.

3For recent work in this direction, see e.g. (Amgoud and
Besnard 2009; Wooldridge, Dunne, and Parsons 2006).

Definition 2 Let D = (S,L,C) be an ADF. M ⊆ S
is called conflict-free (in D) if for all s ∈ M we have
Cs(M ∩ par(s)) = in. Moreover, M ⊆ S is a model
of D if M is conflict-free and for each s ∈ S, Cs(M ∩
par(s)) = in implies s ∈M .

In other words, M ⊆ S is a model of D = (S,L,C)
if for all s ∈ S we have s ∈M iff Cs(M ∩ par(s)) = in.

We say M is a minimal model if there is no model
M ′ which is a proper subset of M .
Definition 3 Let D = (S,L,C) be an ADF. s ∈ S is
a (minimal) consequence of D iff s is contained in all
(minimal) models of D.
We will denote the set of consequences of D as Cn(D).
Example 2 Consider the ADF D = (S,L,C) with
S = {a, b} and L = {(a, b), (b, a)}. If the acceptance
conditions are Ca(∅) = Cb(∅) = in and Ca({b}) =
Cb({a}) = out (that is, we have a Dung framework),
then we have two models, M1 = {a} and M2 = {b}.

For Ca(∅) = Cb(∅) = out and Ca({b}) = Cb({a}) =
in (that is, a and b support each other), we get the two
models, M3 = ∅ and M4 = {a, b}. Only the former is
minimal.

For Ca(∅) = Cb({a}) = out and Ca({b}) = Cb(∅) =
in (that is, a attacks b, b is a necessary support for a),
we get no model at all. Assume a is in, then b is out,
so a has no support and must be out. Assume to the
contrary that a is out. Then b is in, so a has support
and must be in. In both cases we do not have a model.
It is not difficult to verify that, when the acceptance
condition of each node s is represented as a propo-
sitional formula F (s), a model is just a propositional
model of the set of formulas

{s ≡ F (s) | s ∈ S}. (1)

For ADFs corresponding to Dung argumentation
frameworks we obtain the following relationships:
Proposition 1 Let A = (AR, attacks) be an argumen-
tation framework, DA = (AR, attacks, C) its associated
dialectical framework, and E ⊆ AR. (1) E is a conflict-
free set in A iff E is conflict-free in DA; (2) E is a
stable extension of A iff E is a model of DA.
Proof: (1) E is conflict-free in A iff for no s, s′ ∈ E,
s′ attacks s iff E ∩ par(s) = ∅ for all s ∈ E iff Cs(E ∩
par(s)) = in for all s ∈ E. (2) E is a stable extension of
A iff E is conflict free in A and defeats each s ∈ AR\E
iff E is conflict free in DA and for each s ∈ AR \ E,
Cs(E ∩ par(s)) 6= in iff E is a model of DA. 2

For more general ADFs, models and stable models
will be different. This is the topic of the next section.

Here we first want to introduce a generalization of
grounded semantics. Following common terminology in
logic programming we will speak of the well-founded
model rather than the grounded extension.
Definition 4 Let D = (S,L,C) be an ADF. Consider
the operator

ΓD(A,R) = (acc(A,R), reb(A,R))



where acc(A,R) =

{r ∈ S | A ⊆ S′ ⊆ (S \R)⇒ Cr(S′ ∩ par(r)) = in}

and reb(A,R) =

{r ∈ S | A ⊆ S′ ⊆ (S \R)⇒ Cr(S′ ∩ par(r)) = out}.

ΓD is monotonic in both arguments and thus has a
least fixpoint. E is the well-founded model of D iff for
some E′ ⊆ S, (E,E′) is the least fixpoint of ΓD.

The intuition behind this operator is as follows: in
the first argument we collect those statements which
are already known to be in, in the second those which
are known to be out . The least fixpoint can be reached
by iterating ΓD, starting with (∅, ∅). In each iteration,
statement r is added to the first (respectively second)
argument, if whatever the status of the still undecided
statements is (that is, those neither in the first nor in
the second argument), the status of r must be in (re-
spectively out).

We first show that the well-founded model of an ADF
is contained in each of its models.

Proposition 2 Let D be an ADF, W the well-founded
model of D and M an arbitrary model of D. Then
W ⊆M .

Proof: We can show by induction on the number i
of iterations of ΓD that, for all i, ΓiD(∅, ∅) = (A,R)
implies A ⊆M and R∩M = ∅ for each model M of D.
This follows directly from the construction of acc(A,R),
respectively reb(A,R). 2

We next show that the well-founded model generalizes
grounded semantics adequately.
Proposition 3 Let A be an argumentation framework,
DA its associated ADF. The grounded extension of A
coincides with the well-founded model of DA.
Proof: We can show by induction that, for all i > 0,
ΓiDA(∅, ∅) = (F iA(∅), Ri), where FA is the fixpoint op-
erator used in the definition of the grounded extension
(see Background section), and Ri is the set of argu-
ments of A defeated by F i−1

A (∅). From this the result
follows. 2

We finally establish the relationship between logic pro-
grams under the well-founded semantics (Gelder, Ross,
and Schlipf 1991) and their associated ADFs.
Proposition 4 Let G be a normal logic program,
DG = (S,L,C) its associated ADF. The well-founded
model of G is a subset of the well-founded model of DG.
Proof: The well-founded model of G can be charac-
terized as the least fixpoint of the monotone operator
γ2
G obtained by applying the antimonotone operator γG

twice. Here γG(S) = Cn(GS) is the set of consequences
of the Gelfond/Lifschitz reduct GS . The reduct is ob-
tained from G by deleting rules with a literal not a in
the body, for some a ∈ S, and by deleting not literals
from the remaining rules. Applying γG once to a set of
atoms already known to be in the well-founded model

yields a set of potential conclusions, that is, atoms
which are still possibly in this model (the complement
of this set cannot be in the model). Applying γG to a
set of potential conclusions yields a set of atoms which
must be in the well-founded model.

The twofold application of γG is mirrored in a single
application of ΓDG

where the complement of the result
of the first application of γG is kept in the second argu-
ment. We can show that, for i > 0, ΓiDG

(∅, ∅) = (Ai, Ri)
implies γ2i−2

G (∅) ⊆ Ai and S \γ2i−1
G (∅) ⊆ Ri. From this

the result follows. 2

To see that the well-founded model of DG may con-
tain more elements than the well-founded model of G
consider the program G consisting of the four rules

a← not b; a← b; b← not a; b← a

The well-founded model of G is empty, but the well-
founded model of DG is {a, b}.4

Stable and preferred models for BADFs
Stable models in logic programming (Gelfond and Lif-
schitz 1988) exclude self-supporting cycles - which can
be viewed as their distinguishing feature. Such cycles
may appear in models of ADFs and cannot be captured
by minimality alone. An example is the following:

Example 3 Consider the following ADF D =
(S,L,C) with S = {a, b, c}, L = {(a, b), (b, a), (b, c)},
i.e. we have the following structure

a b c

and for the acceptance conditions, we want (a, b) and
(b, a) to be supporting links, that is we have Ca(∅) =
Cb(∅) = out and Ca({b}) = Cb({a}) = in, while (b, c)
should be an attacking link, that is, Cc(∅) = in and
Cc({b}) = out.
D has a model M = {a, b}. c is excluded because b

is in M . However, a is in the model because b is, and
b is in the model because a is. There is mutual cyclic
support and the model appears unjustified. Note that
M is a minimal model, so minimality is insufficient to
exclude this type of unwanted models.

In logic programming the Gelfond/Lifschitz reduction
(Gelfond and Lifschitz 1988) used to define stable mod-
els for normal logic programs guarantees that there are
no such cycles. We will apply a related construction
here. Note that in AFs there are no supporting links
and consequently self-supporting cycles do not play a
role. This is what makes the definition of stable exten-
sions of AFs rather simple.

4As pointed out to us by Mirek Truszczyński in personal
communication, our well-founded models for ADFs appear
to coincide with the ultimate well-founded models developed
in (Denecker, Marek, and Truszczynski 2004). This article
contains a discussion of further semantics which may be of
interest to ADFs. An in depth study of these semantics is
left as future work.



As we saw, the well-founded model can be defined
for arbitrary ADFs. For the definition of stable mod-
els a minimal requirement is the ability to detect self-
supporting cycles, and thus the notion of supporting
versus attacking links.

Definition 5 Let D = (S,L,C) be an ADF. A link
(r, s) ∈ L is

1. supporting iff for no R ⊆ par(s) we have that
Cs(R) = in and Cs(R ∪ {r}) = out,

2. attacking if for no R ⊆ par(s) we have that Cs(R) =
out and Cs(R ∪ {r}) = in.

If (r, s) is a supporting (attacking) link to s we will call r
supporting (attacking) node for s. Note that a link (r, s)
can be both supporting and attacking. However, in this
case r does not have any influence on s whatsoever. We
call (r, s) redundant in this case. Redundant links can
simply be deleted from dialectical frameworks as they
represent no real dependencies.

For links which are neither attacking nor supporting,
the effect of a parent node is dependent on the status
of other parent nodes.

Example 4 Let D = ({a, b, c}), {(a, c), (b, c)}, P ) with
Cc(R) = in iff exactly one of {a, b} is in. Now the
two links are neither supporting nor attacking. For in-
stance, if b is out then a supports c, if b is in then a
attacks c.

We call an ADF monotonic if all of its links are
supporting. Indeed, if D1 = (S1, L1, C1) and D2 =
(S2, L2, C2) are monotonic ADFs such that S1 ⊆ S2,
L1 ⊆ L2 and C1 is the restriction of C2 to the nodes in
S1, then Cn(D1) ⊆ Cn(D2). The following result will
be relevant later.

Proposition 5 Let D = (S,L,C) be a monotonic
ADF. Then D has a unique least model.

Proof: Consider the operator ThD : 2S → 2S defined
as

ThD(S) = {r ∈ S | Cr(S) = in}.
The operator is monotonic and thus possesses a least
fixpoint lfpD which can be reached by iterating ThD
on the empty set. It can be shown by induction on the
number of iterations that all elements of the fixpoint
must be contained in each model of D. Moreover, lfpD
clearly is a model of D. Hence, lfpD is the least model
of D. 2

Now consider the subclass of ADFs all of whose links
are either supporting or attacking (this will include in
particular the weighted ADFs with positive and nega-
tive weights to be defined later). This class allows the
most natural forms of argumentation based on state-
ments pro or con a particular position to be modeled.
We call such frameworks bipolar ADFs, or BADFs for
short.

Our definition of stable models for this class is based
on a slight reformulation of the definition of stable mod-
els for logic programs.

Proposition 6 Let G be a (normal) logic program. M
is a stable model of G iff M is (1) a model of G and (2)
the least model of the model-reduct GM of G obtained
from G by

1. deleting all rules whose body is false in M ,
2. eliminating negated literals from the remaining rules.
Proof: First, observe that GM is always a subset of
GM (the Gelfond/Lifschitz reduct of G). Thus N is
a model of GM , if N is a model of GM . Let M be
a stable model of G. Then M is a model of G, and
since GM ⊆ GM , M is a model of GM . Moreover, all
rules which are applied in the construction of the least
model of GM are contained in GM . Thus M is the least
model of GM . Vice versa, let M be a model of G and
M be the least model of GM but not the least model
of GM . Since GM ⊆ GM , M cannot be a model of
GM , i.e. there exists a rule r in GM , such that body
of r is true in M yet the head of r is not in M . Since
r ∈ GM , there exists a rule r′ in G of the same form
as r but with additional negative literals in the body,
which are however not contained in M . Then, M is not
a model of r′ and thus not a model of G, contrary to
our assumption. 2

The major difference between the original definition
and this reformulation is that the latter uses models
and eliminates all rules whose bodies are false in the
model, including positive ones.5 Based on this idea
stable models for BADFs can be defined as follows:

Definition 6 Let D = (S,L,C) be a bipolar ADF. A
model M of D is a stable model if M is the least model
of the reduced ADF DM obtained from D by

1. eliminating all nodes not contained in M together
with all links in which any of these nodes appear,

2. eliminating all attacking links,
3. restricting the acceptance conditions Cs for each re-

maining node s to the remaining parents of s.

Note that DM has supporting links only, so according
to Proposition 5 the least model exists.

The analogy with the Gelfond/Lifschitz reduct and,
more precisely, the model-reduct introduced above
should be obvious. We want to emphasize again that,
contrary to the Gelfond/Lifschitz reduct, our reduct has
to be applied to sets of statements which are already
known to be models.

Let us see how our construction works for ADFs rep-
resenting Dung systems. Here the proof standards for
all nodes assign in if and only if no parent node is in.
We consider only models when testing stability. If M
is a model, then we know already that nodes not in M
must be attacked by nodes in M . We also know that M
is conflict free, otherwise it would not be a model. To
check whether a model M is stable we eliminate nodes

5In this respect our reduct is closer to the FLP-reduct
(Faber, Leone, and Pfeifer 2004). However, it is not identical
to the FLP-reduct as we also eliminate negated literals from
non-eliminated rules.



not in M and all related links. This leaves us with the
set of nodes in M . Since there is no attack, all of them
are trivially in the least model of the reduced ADF.
Thus, for Dung-style ADFs, models and stable models
coincide.
Proposition 7 Let A be an argumentation framework,
DA its associated dialectical framework. E is a stable
extension of A iff E is a stable model of DA.
Proof: Follows from Proposition 1 (2) and the fact
that models and stable models coincide for Dung-style
ADFs. 2

Example 5 Consider ADF D discussed in Example 3
where a supports b, b supports a, and b attacks c. As
before we have the following acceptance conditions: a is
in iff b is and vice versa. Moreover, c is in unless b is.

There are two models: {a, b} and {c}. Only the latter
is the expected one. Indeed, the reduct of D wrt {a, b}
is ({a, b}, {(a, b), (b, a)}, {Ca, Cb}) where Ca, Cb are as
described above. The reduced framework has the empty
set as least model. The set {a, b} thus is not stable.

On the other hand, the reduct D{c} has no link at
all. According to its acceptance condition c is in, that
is, the least model of the reduct gives us back the original
model; we thus have a stable model as intended.

It is worth mentioning that the ADFs we associated
with normal logic programs earlier are in general not
bipolar. For instance, the ADF for the program

{c← a, not b; c← not a, b}
has links from a and b to c which are neither sup-
porting nor attacking. This shows that our defini-
tion of stable models for ADFs does not immediately
capture the particular type of reduct needed for logic
programs. However, if we choose a slightly more so-
phisticated representation using additional nodes for
rules we can still obtain an interesting connection. Let
r = c ← a1 . . . an, not b1, . . . not bm be a rule. We rep-
resent this rule by connecting the ais and the bjs with
node r, where connections from the former are support-
ing, from the latter attacking. It is easy to define the ac-
ceptance condition for r in such a way that r is in iff the
body of r is satisfied. We then connect r and c with a
supporting link. The acceptance condition for c is such
that c is in whenever at least one rule with head c has
its body satisfied. The resulting ADF is bipolar (unless
the same atom appears positively and negatively in the
body of the same rule, in which case the rule can be
deleted without changing the stable models). We then
can prove that stable models of the ADF constructed
this way correspond to stable models of the program -
modulo the atoms representing applicable rules.
Proposition 8 Let G be a logic program, D the bipolar
ADF constructed from G using rule names N (disjoint
from the atoms in G) as described above. If M is a
stable model of G and N [M ] are the names of rules with
bodies true in M , then M ∪N [M ] is a stable model of
D. Vice versa, if M is a stable model of D, then M \N
is a stable model of G.

Proof: (sketch) (1) Let G+ be the program obtained
from G by replacing each rule head← body with name
n by the two rules head ← n and n ← body. It can
be shown that M is a stable model of G iff M ∪N [M ]
is a stable model of G+, where N [M ] are the names of
G’s rules with bodies true in M . (2) The ADF associ-
ated with the model-reduct of G+ wrt. a model M (see
Proposition 6) is the reduct of D wrt. model M . More-
over, the least model of a definite logic program Gd is
identical to the least model of its associated ADF Dd.
Together with Proposition 6 this implies the result. 2

It even turns out that the addition of nodes allows us
to transform each ADF D = (S,L,C) into a BADF D′

such that
1. each model of D is contained in a model of D′, and
2. for each model M of D′, M ∩ S is a model of D.
The additional nodes needed in D′ represent arbitrary
subsets S′ of S. The node representing S′ has support-
ing links from the elements of S′, and attacking links
from nodes in the complement of S′. The node is in iff
all supporting nodes are in and no attacking node is in.
A “regular” node r then has a supporting link from the
node representing S′ whenever Cr(S′ ∩ par(r)) = in.

This construction obviously is of limited practical rel-
evance as it may lead to an exponential blowup - unlike
the construction for logic programs described above.

Let us now turn to preferred semantics. According
to Dung, a preferred extension of an AF A is a maxi-
mal admissible set of arguments. An admissible set R is
conflict-free and defends itself against potential attack-
ers, that is, each argument attacking an element in R
is attacked by some element of R. This guarantees that
elements of R continue to be defended even if R is “rea-
sonably” extended (see also Dung’s (1995) fundamental
lemma).

Before defining preferred models for BADFs we give
an alternative characterization of admissible sets for
AFs.

Proposition 9 Let A = (AR, att) be an argumenta-
tion framework. E ⊆ AR is admissible in A iff there is
some R ⊆ (AR \ E) such that

1. no element in R attacks an element in E, and
2. E is a stable extension of the reduced argumentation

framework

A-R = (AR \R, {(a, b) ∈ att | a, b ∈ AR \R}).
Proof: Let E be admissible in A. Then E is conflict-
free and attacks each r ∈ (AR \ E) which attacks an
element in E. Let

R = {s ∈ (AR \ E) | (s, t) ∈ att implies t 6∈ E}.
E is a stable extension of A-R.

Vice versa, if E is a stable extension of A-R for some
R consisting only of arguments not attacking E, then
E is conflict-free and attacks each r ∈ AR attacking
some element of E (since such arguments cannot be
contained in R). Thus E is admissible. 2



Our definition of preferred models of bipolar ADFs
will be based on a generalization of this characteriza-
tion. For an ADF D = (S,L,C) and R ⊆ S we use D-R
to denote the bipolar ADF obtained from D by deleting
all nodes in R together with their proof standards and
links they are contained in. Moreover, proof standards
of the remaining nodes are restricted to the remaining
parents.

Definition 7 Let D = (S,L,C) be a bipolar ADF.
M ⊆ S is admissible in D iff there is R ⊆ S such
that

1. no element in R attacks an element in M , and

2. M is a stable model of D-R.

M is a preferred model of D iff M is (inclusion) max-
imal among the sets admissible in D.

Proposition 10 Let D = (S,L,C) be a finite bipolar
ADF. D possesses at least one preferred model.

Proof: Follows from the facts that (1) S - and thus the
number of subsets of S - is finite, and (2) the empty set
is trivially admissible. 2

We next show that the same relationship between stable
and preferred models as in Dung frameworks holds.

Proposition 11 Let D be a bipolar ADF, M a stable
model of D. Then M is a preferred model of D.

Proof: If M is a stable model of D, then M is admis-
sible since M is a stable model of D-∅. It remains to be
shown that M is maximal among the admissible sets.

Assume there is a proper superset M ′ of M which
is admissible in D. Then there is an R such that M ′
is a stable model of D-R. Since ∅ ⊆ R and M ⊆ M ′,
the monotonic ADF (D-R)M

′
cannot have more nodes

and links than the monotonic ADF DM . Thus, the
least model of (D-R)M

′
cannot contain more elements

than the least model M of DM . Since M ′ is a proper
superset of M , it is not a stable model of D-R, contrary
to our assumption. 2

We finally show that Dung frameworks under preferred
semantics are a special case of our approach.

Proposition 12 Let A be an argumentation frame-
work, DA its associated dialectical framework. E is a
preferred extension of A iff E is a preferred model of
DA.

Proof: It suffices to show that E is admissible in A
iff E is admissible in DA. This follows from the facts
that (1) R satisfies condition 1 in Proposition 9 iff it
satisfies condition 1 in Definition 7, and (2) E is a sta-
ble extension of A-R iff it is a stable model of DA-R
(Proposition 7). 2

We thus have successfully generalized the three most
important semantics introduced by Dung for AFs to
ADFs, respectively BADFs.

Weighted ADFs and proof standards

Acceptance conditions can be defined in a particularly
convenient way through (positive and negative) weights
of links. For this reason, we will introduce weighted
ADFs in this section, and then show how some of the
domain independent proof standards which have been
discussed in the literature on legal argumentation can
be represented. We start with qualitative weights and
discuss numerical weights later on.

A weighted ADF is an ADF whose acceptance condi-
tions are defined in terms of weights of links. For a given
ADF D = (S,L,C) we thus need an additional function
w : L → V , where V is some set of weights. In order
to simplify notation, when applying w to (r, s) ∈ L we
will write w(r, s) rather than w((r, s)).

In the simplest case we can use V = {+,−} where +
represents a supporting (positive) link, − an attacking
(negative) link. The resulting ADFs clearly are bipolar,
and so we can immediately apply all semantics. In this
setting the following domain independent acceptance
conditions immediately come to mind:

1. Cs(R) = in iff R contains no node attacking s,

2. Cs(R) = in iff R contains no node attacking s and at
least one node supporting s,

3. Cs(R) = in iff R contains more nodes supporting s
than nodes attacking s

4. Cs(R) = in iff R contains all nodes supporting s and
no node attacking s.

The weights also help us to make the dependency
graphs more readable. Recall Example 1 where w and
k are in, l is out , and the acceptance condition of the 3
other nodes corresponds to 4. in the list above. Using
weights, the dependency graph - and the single model
- can be represented as follows:

l w

s k

m i

− +

− +

−

Following Prakken (2009) we can also introduce “neces-
sary axioms” by defining Cs(R) = in for all R ⊆ par(s).
This means that such axioms are always accepted and
can never be successfully attacked. Prakken’s “issues”
are acceptable only in case they are “backed with a
further argument”. This can obviously be modeled by
choosing an acceptance condition which yields out in
case no supporting node is in R.

Farley and Freeman (1995) introduced a model of
legal argumentation which distinguishes four types
of arguments: (1) valid arguments based on deduc-
tive inference, (2) strong arguments based on in-
ference with defeasible rules, (3) credible arguments
where premises give some evidence, (4) weak argu-
ments based on abductive reasoning. By using values



V = {+v,+s,+c,+w,−v,−s,−c,−w} we can distin-
guish pro and con links of corresponding types. Far-
ley and Freeman distinguished 5 different standards of
proof which can be modeled in ADFs as follows:
1. Scintilla of Evidence: at least one weak, defendable

argument.
Cs(R) = in iff ∃r ∈ R : w(r, s) ∈ {+v,+s,+c,+w}.

2. Preponderance of Evidence: at least one weak, de-
fendable argument that outweighs the other side’s
argument: Cs(R) = in iff
• ∃r ∈ R : w(r, s) ∈ {+v,+s,+c,+w} and
• ¬∃r ∈ R : w(r, s) = −v and
• ∃r ∈ R : w(r, s) = −s implies ∃r′ ∈ R : w(r′, s) =

+v and
• ∃r ∈ R : w(r, s) = −c implies ∃r′ ∈ R : w(r′, s) ∈
{+v,+s} and
• ∃r ∈ R : w(r, s) = −w implies ∃r′ ∈ R : w(r′, s) ∈
{+v,+s,+c}.

3. Dialectical Validity: at least one credible, defendable
argument and the other side’s arguments are all de-
feated: Cs(R) = in iff
• ∃r ∈ R : w(r, s) ∈ {+v,+s,+c, } and
• w(t, s) 6∈ {−v,−s,−c,−w} for all t ∈ R.

4. Beyond Reasonable Doubt: at least one strong, de-
fendable argument and the other side’s arguments all
defeated: Cs(R) = in iff
• ∃r ∈ R : w(r, s) ∈ {+v,+s} and
• w(t, s) 6∈ {−v,−s,−c,−w} for all t ∈ R.

5. Beyond Doubt: at least one valid argument and the
other side’s arguments all defeated: Cs(R) = in iff
• ∃r ∈ R : w(r, s) = +v and
• w(t, s) 6∈ {−v,−s,−c,−w} for all t ∈ R.
More fine grained distinctions can be made if V is a

set of numerical weights. We can then define several
other natural proof standards. Examples are:
• Cs(R) = in iff the sum of all weights of links from

elements of R to s is positive,
• Cs(R) = in iff the maximal positive weight of incom-

ing links is higher than the maximal negative weight,
• Cs(R) = in iff the difference between the maximal

positive weight and the absolute value of the maximal
negative weight is above a certain threshold.
We emphasize that weighted ADFs allow for a sim-

pler and domain-independent formulation of acceptance
conditions, but are not a proper generalization of stan-
dard ADFs (i.e. ADF without weighted links). In fact,
the weight-based evaluation of a proof standard can al-
ways be compiled into a regular boolean expression.

Prioritized BADFs
We have seen in the last section how weights on links
can be used to define domain independent proof stan-
dards. Another useful option is to use qualitative pref-
erences. LetD = (S,L,C) be a bipolar ADF. Moreover,

assume for each node s ∈ S we are given a strict partial
order >s on the links in L leading to s. We can now
take the preference information into account by defin-
ing Cs(R) = in iff for each attacking link (r, s) ∈ L such
that r ∈ R there is a supporting link (r′, s) ∈ L with
r′ ∈ R such that (r′, s) >s (r, s).

This definition assumes that a node is out unless its
joint support is more preferred than its joint attack.
We can also reverse this by defining Cs(R) = out iff for
each supporting link (r, s) ∈ L such that r ∈ R there
is an attacking link (r′, s) ∈ L with r′ ∈ R such that
(r′, s) >s (r, s). The default case is now that a node is
in unless its attackers are jointly preferred. Of course,
nothing prevents us from having nodes of both kinds in
a single prioritized BADF.

This treatment of preferences is very different from
the one proposed in (Amgoud and Cayrol 1998). Rather
than preferences on nodes, we use preferences on links in
the graph. For some difficulties of the former approach
see (Dimopoulos, Moraitis, and Amgoud 2009).

Complexity of ADFs
In this section, we assume that acceptance conditions
of ADFs are given via propositional formulas. We start
with the case of well-founded semantics.

Proposition 13 Deciding whether a given set of state-
ments is the well-founded model of a given ADF is
coNP-hard.

Proof: The following simple reduction from the coNP-
hard problem of validity of propositional logic to the
considered problem shows the claim:

For a formula φ over atoms A, construct

Dφ = (A ∪ Ā ∪ {t}, {(a, ā), (ā, a), (a, t) | a ∈ A}, C)

where Ā = {ā | a ∈ A} and t are fresh statements
(disjoint from A), and C is given as Ca = ¬ā and Cā =
¬a for each a ∈ A, and Ct = φ.

We show that {t} is the well-founded model of Dφ iff
φ is valid. First note that a’s and ā’s mutually attack
each other and thus are not in the well-founded model.
The following obvious observation shows the claim: t ∈
acc(∅, ∅) iff Ct(S) = in for all S ⊆ A iff φ is true under
all assignments S iff φ is valid. 2

We next turn to BADFs. Deciding whether an ADF
is bipolar is also intractable (and so is deciding whether
a link is supporting or attacking), but the well-founded
semantics for BADFs becomes tractable once the at-
tacking and supporting links are known.

Proposition 14 Deciding whether a given ADF is
bipolar is coNP-hard.

Proof: We can use the construction from the proof of
Proposition 13. Obviously links (a, ā) and (ā, a) are
attacking, and links (a, t) are supporting, in case φ is
valid (Ct(S) always yields in then). In case, φ is not
valid, it is however not necessarily the case that links
(a, t) are not supporting. But we can guarantee this



property, if we restrict ourselves to formulas φ which
evaluate to true under the assignment where all atoms
are assigned false. Obviously, the validity problem re-
mains coNP-hard for such formulas. 2

Proposition 15 Deciding whether a given set of state-
ments is the well-founded model of a given BADF with
supporting links L+ and attacking links L− can be done
in polynomial time.

Proof: It is sufficient to show that deciding r ∈
acc(A,R), resp. r ∈ reb(A,R), can be done in poly-
nomial time. Let A′ be the union of sets A∩par(r) and
the supporting nodes for r. To decide r ∈ acc(A,R)
amounts in case of BADFs to check whether Cr(A′) =
in. This can be seen as follows: Let S be any set of
statements such that A ∩ par(r) ⊆ S ⊆ par(r). Then,
each statement in T = A′\S is attacking and each state-
ment in U = S \ A′ is supporting. By the definition of
attacking statements, we get from Cr(A′) = in that
also Cr(A′ \ T ) = in, and further, by the definition of
supporting statements, that also Cr((A′ \T )∪U) = in.
Note that (A′ \ T ) ∪ U = S. Thus, Cr(S) = in holds
for all relevant sets S.

Similarly, one can show that deciding r ∈ reb(A,R)
amounts in case of BADFs to check whether Cr(A′′) =
out , where A′′ is the union of sets A ∩ par(r) and the
attacking nodes for r. 2

Proposition 16 Deciding whether a statement s is
contained in some (resp. all) stable models of a BADF
with supporting links L+ and attacking links L− is NP-
complete (resp. coNP-complete).

Proof: We only have to show the membership parts,
since known hardness results (Dimopoulos and Torres
1996) about Dung frameworks carry over to ADFs. For
the NP-result, we provide the following algorithm which
decides, given a BADF D = (S,L,C) and a statement
s, whether s is contained in a stable model of D: Guess
a set M ⊆ S with s ∈ M and check whether (i) M
is a model of D and (ii) M is the least of model of
DM . Both tasks can be done in polynomial time (wrt.
the size of D) ad (i): this corresponds to the problem
of model checking for a propositional formula. ad (ii):
Constructing DM is easy. Computing the (unique) least
model of a monotonic ADF (DM is such an ADF), takes
at most quadratic time by using the fixpoint construc-
tion in the proof of Proposition 5.

This shows the NP-result. The coNP-result is by a
similar argumentation using the complementary prob-
lem (use M as above but with s /∈M). 2

Proposition 17 Deciding whether a statement s is
contained in some (resp. all) preferred models of a
BADF with supporting links L+ and attacking links L−
is NP-complete (resp. ΠP

2 -complete).

Proof: Again, we only have to show the member-
ship parts, since known hardness results (Dimopoulos
and Torres 1996; Dunne and Bench-Capon 2002) about

Dung frameworks carry over to ADFs. For the NP-
result, we provide the following algorithm which de-
cides, given a BADF D = (S,L,C) and a statement
s, whether s is contained in a set admissible in D (and
thus whether s is contained in some preferred extension
of D). We guess sets M,R ⊆ S, such that s ∈ M and
such that there is no attacking link from any element of
R to any element of M , and then check whether M is a
stable model of D-R. To check whether a set of state-
ments is a stable model of a BADF has been shown to
be in P already in the proof of Proposition 16.

For the ΠP
2 -result, we show ΣP2 -membership for the

complementary problem. To this end, consider the fol-
lowing algorithm: guess a set M with s /∈ M , check
whether (i) M satisfies conditions 1 and 2 of Defini-
tion 7, and (ii) whether no N ⊃ M satisfies conditions
1 and 2 of Definition 7. Using a similar argumentation
as above, it is clear that (i) can be done in polynomial
time and (ii) can be done via an NP-oracle. 2

Thus, with the exception of well-founded semantics for
non-bipolar ADFs, our generalization of Dung frame-
works does not increase the complexity of important
reasoning tasks given the link types are already known.

Discussion and related work
In this paper we introduced abstract dialectical frame-
works, a powerful generalization of Dung frameworks
where various forms of dependencies among statements
can be represented by using acceptance conditions. We
introduced grounded, stable and preferred semantics for
our frameworks, the latter for a slightly restricted class
called bipolar. We also presented various ways of defin-
ing acceptance conditions based on weights on links, re-
spectively qualitative preferences. Moreover, we showed
how to represent legal proof standards.

Our approach shares some motivation with bipo-
lar argumentation frameworks (Cayrol and Lagasquie-
Schiex 2009), an extension of argumentation frame-
works that includes a second relation expressing sup-
port. However, our proposal is more flexible and goes
further in several respects. In particular, rather than
adding a second type of links we allow for a whole vari-
ety of link and node types. Moreover, there is a funda-
mental difference between what is considered a conflict
in bipolar AFs and ADFs.

Example 6 Assume you plan to go swimming in the
afternoon. There are clouds indicating it might rain.
However, the (reliable) weather report says that winds
will blow away the clouds so that there will be no rain.
Now c supports r, r attacks s and w attacks r. Using
appropriate acceptance conditions, assuming w’s attack
on r is stronger than c’s support, we get {c, w, s} as the
single well-founded, stable and preferred model which
makes perfect sense. However, this set is not +conflict-
free in the sense of (Cayrol and Lagasquie-Schiex 2009).

To model the stronger notion of +conflict-freeness
in ADFs one has to add an attack link from a to c
whenever c is attacked by a node b and a, directly or



indirectly, supports b. The example suggests that this
may not always be desired.

Oren and Norman (2008) propose an extension of
AFs where an argument needs evidential support in or-
der to attack other arguments. This support is ulti-
mately based on a special argument representing “sup-
port from the environment”. Again, our framework is
more general and provides additional flexibility, e.g. in
using weights for determining the status of arguments.

Weighted argumentation frameworks were discussed
in a recent paper by Dunne et al. (2009). However, the
weights there are used for inconsistency handling, that
is, for determining which links to disregard in case of
non-existence of stable extensions, not for determining
the status of arguments as in our proposal.

We have restricted our discussion in this paper to
Dung’s standard semantics. Several alternative pro-
posals exist like semi-stable (Caminada 2006) and ideal
(Dung, Mancarella, and Toni 2007) semantics. In fu-
ture work we plan to generalize those as well.

We also plan to reconstruct the Carneades framework
(Gordon, Prakken, and Walton 2007) as an ADF. This
will provide Carneades with the different semantics we
developed for ADFs. It will also demonstrate one of
the common uses we foresee for our ADFs, namely as
target systems for translations from less abstract sys-
tems. Due to their greater expressiveness we expect
translations to ADFs to be easier than those to AFs.
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