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Abstract
Multi-context systems (MCS) are a powerful frame-
work for interlinking heterogeneous knowledge
sources. They model the flow of information among
different reasoning components (called contexts)
in a declarative way, using so-called bridge rules,
where contexts and bridge rules may be nonmono-
tonic. We considerably generalize MCS to managed
MCS (mMCS): while the original bridge rules can
only add information to contexts, our generalization
allows arbitrary operations on context knowledge
bases to be freely defined, e.g., deletion or revision
operators. The paper motivates and introduces the
generalized framework and presents several interest-
ing instances. Furthermore, we consider inconsis-
tency management in mMCS and complexity issues.

1 Introduction
Over the last decades research in knowledge representation
and, more generally, information technology has produced a
large variety of formats and languages for representing knowl-
edge. A wealth of tools and formalisms is now available,
including rather basic ones like databases or the more re-
cent triple-stores, and more expressive ones like ontology
languages (e.g., description logics), temporal and modal log-
ics, nonmonotonic logics, or logic programs under answer set
semantics, to name just a few (see van Harmelen et al. [2008]).
Several are widely used, a development particularly fueled by
the advent and continuous growth of the world wide web.

However, the diversity of formalisms also poses some impor-
tant challenges: What is the best way to benefit from it? How
to build systems that need access to heterogeneous knowledge
sources, e.g., in ambient intelligence [Bikakis and Antoniou,
2008]? A standardized, universal knowledge representation
language certainly cannot be the solution. There are very
good reasons for special purpose representation languages,
e.g., domain specific modeling needs and complexity.

Nonmonotonic multi-context systems (MCS) [Brewka and
Eiter, 2007] provide a promising way to address the challenges
above. The basic idea is to leave the diverse formalisms and
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knowledge bases (called contexts in this approach for histori-
cal reasons [Giunchiglia and Serafini, 1994]) as they are, but
to model the necessary information flow among contexts using
so-called bridge rules. The latter are similar to logic program-
ming rules (including default negation), but allow access to
other contexts in their bodies. This has several advantages:
the specification of the information flow is fully declarative;
moreover, not only can information be passed from one con-
text to another as is; bridge rules also provide means, e.g., for
selection, abstraction and conflict resolution between contexts.
Example 1. Consider a pharmaceutical company producing
drugs. A drug effect database C1 holds information about
what is the remedy of an illness caused by certain bacteria,
also treatments known to be ineffective are stored. To maximize
efficiency, the company wants to know all kinds of illness that
can be cured by their drugs. A public health RDF-triple store
C2 is queried on illness caused by bacteria for which C1

already holds a remedy. Furthermore, probable influence of
the drugs on other bacteria is derived which enables more
focused clinical trials, i.e., only those effects are tested in the
later trial where a likely effect was found. This is realized using
an ontology about bacteria C3 and a third party reasoner to
derive likely drug effects on other bacteria. To this end, C1

may use a view restricted to the necessary information.
Although MCS are, as we believe, an excellent starting

point to address the problems from above, the way they in-
tegrate knowledge is still quite limited: if a bridge rule for a
context is applicable, then the rule head is simply added to the
context’s knowledge base (KB). Although this covers the flow
of information, it does not capture other operations one may
want to perform on context KBs. For instance, rather than
simply adding a formula φ, we may want to revise [Peppas,
2008] the KB with φ to avoid inconsistency in the context’s
belief set; and, we may want to modify only certain parts of
KB such that φ is entailed. In Example 1, an update of C1’s
view to C3 may be wanted (which must be realized inside C3).

For this reason, we introduce in this paper a new, more
general form of MCS where such additional operations on
knowledge bases can be freely defined; this is akin to manage-
ment functionality of database systems. We call the additional
component context manager and the generalized systems man-
aged multi-context systems (mMCS).

The outline of the paper is as follows: after recalling the
necessary background on MCS, we introduce the new frame-



work in Section 3, while Section 4 discusses sample instances.
Several aspects of inconsistency management in mMCS are
addressed in Section 5 and complexity issues in Section 6.

2 Preliminaries
Multi-Context Systems as defined in Brewka and Eiter
[2007] build on an abstract notion of a logic L as a triple
(KBL,BSL,ACCL), where KBL is the set of admissible
knowledge bases of L, which are sets of KB-elements (“for-
mulas”); BSL is the set of possible belief sets, whose elements
are beliefs; and ACCL : KBL → 2BSL is a function describ-
ing the semantics of L by assigning each knowledge-base a
set of acceptable belief sets.

A multi-context system (MCS) M = (C1, . . . , Cn) is a
collection of contexts Ci = (Li, kbi, bri) where Li is a logic,
kbi ∈ KBLi

is a knowledge base and bri is a set of bridge
rules of the form:

s←(c1: p1), . . . , (cj : pj),

not(cj+1: pj+1), . . . , not(cm: pm). (1)

such that kb ∪ {s} is an element of KBLi , c` ∈{1, . . . , n},
and p` is element of some belief set of BS c` , for all 1 ≤ ` ≤
m. For a bridge rule r, we denote by hd(r) the formula s
while body(r) denotes the set {(c`1 : p`1) | 1 ≤ `1 ≤ j} ∪
{not(c`2 : p`2) | j < `2 ≤ m}.
Example 2 (ctd). In our running example, C1 is a relational
database which contains the information that penicillin reme-
dies pneumonia caused by the bacteria streptococcus pneumo-
niae and also that azithromycin remedies Legionair’s disease
caused by legionella pneumophila, effectiveness of both reme-
dies is backed by clinical trials and therefore evident. Also,
it contains information that penicillin is ineffective against
legionella pneumophila. C2 is an RDF-triple store containing
information that streptococcus pneumoniae causes meningi-
tis and legionella pneumonphila causes atypical pneumonia.
Formally, the knowledge bases of C1, respectively C2, are:

kb1 = {treat(pen, str pneu, pneu, evd),
treat(azith, leg pneu, leg , evd),
ineff (pen, leg pneu)},

kb2 = {str pneu rdf :causes men,
leg pneu rdf :causes atyp pneu}.

To incorporate information from C2, C1 uses the following
bridge rule connecting existing information about effects on
bacteria with illness caused by the same bacteria. The incor-
porated information is further marked as only being likely, but
not clinically tested. The set of bridge rules of C1 is given by:

br1 = {treat(X,B, I, likely)← (1 : treat (X,B, , )) ,
(2 :B rdf :causes I) .}.

Here we use for readability and succinctness schematic
bridge rules with variables (upper case letters and ) which
range over associated sets of constants; they stand for all
respective instances (obtainable by value substitution).

A belief state S = (S1, . . . , Sn) for M consists of belief
sets Si ∈ BS i, 1 ≤ i ≤ n. A bridge rule r of form (1) is
applicable wrt. S, denoted by S |= body(r), iff p` ∈ Sc`

for 1 ≤ ` ≤ j and p` /∈ Sc` for j < ` ≤ m. We use
appi(S) = {hd(r) | r ∈ bri ∧ S |= body(r)} to denote the
heads of all applicable bridge rules of context Ci wrt. S.

The semantics of an MCS M is then defined in terms of
equilibria, where an equilibrium is a belief state (S1, . . . , Sn)
such that Si ∈ ACC i(kbi ∪ appi(S)), 1 ≤ i ≤ n.

Example 3 (ctd). Suppose the possible belief sets in C1 and
C2 are all sets of facts (over the respective vocabularies)
and the acceptable ones for a knowledge base kb are those
holding the facts which logically follow from kb under the re-
spective inference closure inf i, i.e., ACC i(kb) = {inf i(kb)}.
In our example we have a single equilibrium S= (S1, S2),
given by S1 = inf 1(kb1 ∪ app1(S)) = kb1 ∪{treat(pen,
str pneu,men, likely), treat(azith, leg pneu, atyp pneu,
likely)} and S2 = inf 2(kb2 ∪ app2(S)) = kb2.

3 Managed Multi-Context Systems
Multi-Context Systems allow us to increase the knowledge
base of a context using information from other contexts, but
not to operate on it in other ways. Such other operations might
be: removal of information; revision with new information,
or other complex operations like view-updates of databases;
program updates of logic programs; modifications of argumen-
tation frameworks, etc. Notably, those operations are realized
by legacy systems, but the MCS framework can not cope with
this functionality in a principled way.

To enable such functionality with a clear distinction be-
tween the knowledge base and additional operations on it,
we introduce the managed Multi-Context Systems framework.
The latter extends Multi-Context Systems such that contexts
come with an additional managing function which evaluates
the aforementioned operations, in analogy to the distinction of
a database (DB) and a database management system (DBMS).

Example 4 (ctd). Assume C1’s data is offered to a third
party C4 for deriving further possible drug effects. To that
end, a view “eff ” is created containing only the information
about which drug effects what bacteria, i.e., (X,B) ∈ eff iff
(X,B, , evd) ∈ treat , as information derived from C4 is also
returned through this view, it must be updateable.
C4 is a logic program accessing the ontology C3 on bac-

teriological relations to deduce probable effects on related
bacteria. C1 also holds information on ineffective drugs which
should be incorporated into C4 by means of a logic program
update. This allows to deduce probable effects on bacteria
except for cases where there is already negative evidence.

To accommodate flexible semantics of contexts, we extend
the above notion of “logic” to one which has several seman-
tics to choose from. This allows, e.g., that a logic program
is evaluated using well-founded semantics instead of stable
semantics based on input from other contexts, or switching
from classical to paraconsistent semantics.

Definition 1. A logic suite LS = (BSLS ,KBLS ,ACCLS )
consists of the set BSLS of possible belief sets, the set KBLS

of well-formed knowledge-bases, and a nonempty set ACCLS
of possible semantics of LS , i.e, ACCLS ∈ ACCLS implies
ACCLS : KBLS → 2BSLS .



For a logic suite LS , FLS = {s ∈ kb | kb ∈ KBLS} is the
set of formulas occurring in its knowledge bases.
Definition 2. A management base is a set of operation names
(briefly, operations) OP .

Intuitively, a management base is the set of commands that
can be executed on formulas, e.g., addition of, revision with,
etc. a formula. For a logic suite LS and a management base
OP , let FOP

LS = {o(s) | o ∈ OP , s ∈ FLS} be the set of
operational statements that can be built from OP and FLS .

The semantics of such statements is given by a management
function. A management function maps a set of operational
statements and a knowledge base to pairs of a modified knowl-
edge base and a semantics. It allows to not only add formulas
to a context, but to specify any desired operations to be applied
on formulas and a context.
Definition 3. A management function over a logic suite LS

and a management base OP is a function mng : 2F
OP
LS ×

KBLS → 2(KBLS×ACCLS ) \ {∅}.
Bridge rules for context Ci are now of form (1) as for MCS,

but with the head expression s being an operational statement
for the management function mng i of Ci; let OP i be the
management base of Ci, then s ∈ FOPi

LSi
.

Example 5 (ctd). Regarding C1, an operation “insert” is
introduced and the management function mng1 is defined
such that tuples inserted into the view eff are transformed
to treat tuples; formally, mng1(O, kb1) = {(kb1 ∪ N ∪ V,
ACC 1)} where N = {treat(~t) | insert(treat(~t)) ∈ O},
V = {treat(X,B, I, est) | insert(eff (X,B)) ∈ O ∧
treat( , B, I, ) ∈ kb1 ∪ N} and kb1 is extended by the fol-
lowing view definition: eff (X,B)← treat(X, ,B, evd).

For C4, the operations are OP4 = {upd , add} and mng4
adds all formulas in add as facts and the resulting program
is updated according to formulas in upd by the method given
in Alferes et al. [2002], which avoids inference of conflicting
information (see Ex. 7 for details). Thus, mng4 always selects
the stable model semantics of dynamic logic programs.

A managed MCS (mMCS) is then an MCS where each
context additionally comes with a management function and
bridge rule heads are operational statements.
Definition 4. A managed Multi-Context System M is a
collection (C1, . . . , Cn) of managed contexts where, for
1 ≤ i ≤ n, each managed context Ci is a quintuple Ci =
(LS i, kbi, br i,OP i,mng i) such that

• LS i = (BSLSi
,KBLSi

,ACCLSi
) is a logic suite,

• kbi ∈ KBLSi
is a knowledge base,

• br i is a set of bridge rules for Ci,

• OP i is a management base, and

• mng i is a management function over LS i and OP i.

As for ordinary MCS, a belief state S = (S1, . . . , Sn) of
M is a belief set for every context, i.e., Si ∈ BSLSi . Again,
by appi(S) = {hd(r) | r ∈ br i ∧ S |= body(r)} we denote
the set of applicable heads of bridge rules, which is a set of
operational statements.

The semantics of mMCS is now in terms of equilibria.

Definition 5. Let M = (C1, . . . , Cn) be an mMCS. A be-
lief state S= (S1, . . . , Sn) is an equilibrium of M iff
for every 1 ≤ i ≤ n there exists some (kb′i,ACCLSi

)∈
mng i(appi(S), kbi) such that Si ∈ ACCLSi

(kb′i).
Observe that an ordinary context Ci = (Li, kbi, br i) with

logic Li = (BSLi ,KBLi ,ACCLi) can be easily turned into
a managed context C ′i = (LS i

′, kbi, br ′i,OP i, add i) over
LS i = (BSLi ,KBLi , {ACCLi}), where OP i = {add i} and
add i interprets add(f) as addition of f , i.e., add i(O, kbi) =
{(kbi ∪ {s | add(s) ∈ O},ACCLi

)} and br ′i = {add(s) ←
body(r) | r ∈ br i ∧ hd(r) = s}. We call C ′i the management
version of Ci and for convenience we identify both. Managed
MCS thus generalize ordinary MCS.
Proposition 1. LetM = (C1, . . . , Cn) be an MCS andM ′ =
(C ′1, . . . , C

′
m) the mMCS where each C ′i is the management

version of Ci. Then S is an equilibrium of M iff S is an
equilibrium of M ′.
Example 6 (ctd). A bacteria DL ontology C3 and a general-
ized logic program C4 to derive further possible drug effects
are added, using suitable logics and semantics (belief sets for
C3 contain standard TBox subsumption inferences subs(kb)).
Their knowledge bases are

kb3 = {str pneu v bact , leg pneu v bact},
kb4 = {eff (X,B) :− eff (X,A), isa(A,C), isa(B,C).}.

As C2 and C3 have no bridge rules, they are simply cast into
their management versions. C4 gets bridge rules

br4 = {add(isa(X,Y ))← (3 : (X v Y )) .
add(eff (X,B))← (1 : eff (X,B)) .
upd(not eff (X,B))← (1 : ineff (X,B)) .},

and the bridge rules of C1 are adapted: their heads use now
the insert operation, and further rules that incorporate prob-
able drug effects from C4 are added:

br1 = {insert(treat(X,B, I, likely))← (1: eff (X,B)) ,
(2:B rdf :causes I) .

insert(eff (X,B))← (4 : eff (X,B)) .}.

The resulting mMCSMph = (C1, C2, C3, C4) has one equilib-
rium S = (S1, S2, S3, S4) where, omitting for brevity atoms of
the form not a in S4, S2 = inf 2(kb2) = kb2, S3 = subs(kb3),

S1 = {treat(pen, str pneu,men, likely),
treat(azith, leg pneu, atyp pneu, likely),
treat(azith, str pneu, pneu, est),
treat(azith, str pneu,men, est),
eff (azith, str pneu), eff (azith, leg pneu),
eff (pen, str pneu)} ∪ kb1, and

S4 = {eff (pen, str pneu), eff (azith, str pneu),
eff (azith, leg pneu), isa(str pneu, bact),
isa(leg pneu, bact)}.

4 Sample Instantiations
We consider instantiations of our framework, first discussing
relational databases, logic programs, and belief revision. Sec-
ond, we capture argumentation context systems by mMCSs.



Relational Databases. For relational databases, our running
example already shows how a management function is used
to realize view-updates. Many other operations on databases
may be realized using managed contexts. In fact, e.g., the SQL
language, ΣSQL, can be accomodated: a context whose man-
agement base is built upon ΣSQL and a management function
mngSQL which realizes the SQL semantics. This allows to
use SQL in an mMCS. Observe that the implementation of
mngSQL is rather trivial, as existing implementations of SQL
can be used via suitable interfaces, e.g., MySQL, Oracle DB,
etc. In our running example, the respective view statement is:
CREATE VIEW eff AS

SELECT drug, bacteria FROM treat
WHERE credibility = evd;

To realize ordered sequences of SQL statements one may
use timestamps in bridge rules handled by mngSQL.

Belief Revision. Change of logical theories and knowledge
bases is a long-standing area in logic and AI. Central oper-
ations on beliefs are expansion , contraction, revision and
update (see Peppas [2008] for an excellent survey).

Let L be a logic with set L of formulas and semantics
ACCL, and let rev : 2L × L → 2L be a revision operator
for theories in L. We may define a management function
mngrev for the management base {revise}, e.g., as follows:
mngrev (O, kb) = {(rev(kb, {φ1 ∧ . . . ∧ φn | revise(φi) ∈
O}),ACCL)}. Here, multiple revisions (n ≥ 2) are handled
by conjunction; other realizations (e.g., iteration) exist.

Logic Programming. Various extensions of logic programs
have been proposed, e.g., updates of logic programs [Alferes
et al., 2002] which we use in our running example, debugging-
support [Brain et al., 2007], or meta-reasoning support. Many
of them are realized using meta-programming, i.e., they trans-
form a logic program Pe and additional input I , into a logic
program Pt, such that solutions to the problem given by Pe

and I are obtained from Pt (without altering the semantics).
In the mMCS framework, we can achieve this directly us-
ing a management function mng such that, for a program
Pe and operational statements O encoding I , mng(O,Pe) =
{(Pt, ACCLP )} where Pt is assembled from Pe and O, and
ACCLP is the employed semantics of logic programs.

Example 7 (ctd). Suppose C4 uses the update semantics of
Alferes et al. [2002], i.e., the semantics of upd is given by
the respective program transformation. For the operational
statement upd(not eff (pen, leg pneu)) which is applicable
in the belief state S of Example 6, the relevant rules are

not eff (pen, leg pneu) :− . (2)
eff (pen, leg pneu) : − eff (pen, bact), isa(str pneu, bact),

isa(leg pneu, bact). (3)

The ground instance (3) is rejected (not contained in the trans-
formed program), intuitively because it is in conflict with the
more recent information represented by (2). Therefore, the
stable model does not contain eff (pen, leg pneu).

The ability of the management function to choose among
different semantics allows one to flexibly select a suitable
logic program semantics depending on the belief state.

E.g., one may enforce for a program in context Ci that
paraconsistent semantics as in Sakama and Inoue [1995]
is used if it has an inconsistent belief set, and answer set
semantics otherwise. It is achieved by self-referential bridge
rules mode pas(b) ← (i :⊥) and mode as(b) ← not(i :⊥),
where ⊥ encodes inconsistency and mode x the semantic
mode of use.

Argumentation Context Systems. Argumentation context
systems (ACS) [Brewka and Eiter, 2009] are homogeneous: all
reasoning components are Dung argumentation frameworks
(AFs) [Dung, 1995]. Yet, in this restricted setting they provide
some functionality which is relevant here: bridge rules not
only extend context AFs, they may also invalidate arguments
or attack relations, they may even select a semantics; moreover,
they provide ways of resolving inconsistent updates.

This additional functionality is achieved by introducing for
each context a mediator Med = (br , inc), which consists of
a set br of bridge rules plus an inconsistency handling method
inc. The heads of bridge rules are expressions in a genuine
update description language. Based on inc, Med collects
the heads of applicable bridge rules and returns one or several
consistent sets of update statements, called acceptable updates.

A state S assigns to each context an update Ui and a set of
arguments Asi. Equilibria (here called acceptable states) sat-
isfy the following condition: each Asi must be an acceptable
set of arguments for the context’s AF updated with Ui, and Ui

must be acceptable in S. It is not difficult to reconstruct this
approach in the framework of mMCS. For each context Ci we
choose Oi such that expressions of the ACS update language
become operational statements. Furthermore, the management
function mng i must capture the meaning of the update expres-
sions and the mediator’s consistency handling method. Due
to space limitations we cannot provide more detail but want
to point out that acceptable ACS states and equilibria of the
respective mMCS are in 1-to-1 correspondence.

5 Inconsistency Management
Different forms of inconsistency can arise in mMCS:
1. Nonexistence of equilibria: this global form of inconsis-
tency was investigated in Eiter et al. [2010] for MCS.

2. Local inconsistency: even if equilibria exist, they may
contain inconsistent belief sets. This presupposes an adequate
notion of consistency (for belief sets and sets of formulas). In
most context logics such a notion exists or is easily defined.

3. Operator inconsistency: the operations in the heads of
applicable bridge rules are conflicting, e.g., operations like
add(p) and delete(p), or add(p) and add(¬p).

Handling inconsistencies of type 2 and 3 is one of the mo-
tivations that led to the development of mMCS. For type 1
inconsistencies the techniques from Eiter et al. [2010] can
be adapted and, given suitable context managers, yield more
adequate and precise means for diagnosis.

5.1 Local consistency
We now demonstrate how local consistency can be achieved
by using adequate managers. We call a management func-
tion mng local consistency (lc-) preserving iff, for each set



O of operational statements and each KB kb, in every pair
(kb′,ACC ) ∈ mng(O, kb) the KB kb′ is consistent. Further-
more, an mMCSM is locally consistent iff in each equilibrium
S = (S1, . . . , Sn) of M , all Si are consistent belief sets.

Proposition 2. Let M be an mMCS such that all management
functions are lc-preserving. Then M is locally consistent.

How to define lc-preserving managers? To simplify matters
we assume all contexts are based on propositional logic with
classical consistency and semantics, given by ACCpl , and
consider a single operator add with the obvious meaning.
We proceed by: (1) selecting a base revision operator rev
satisfying consistency preservation (revising a propositional
KB with a consistent formula always results in a consistent
KB); (2) picking maximal consistent subsets of the formulas
to be added. Let FO = {p | add(p) ∈ O} and let MC (FO)
be the set of maximal consistent subsets of FO. Now define
mng(O, kb) = {(rev (kb,

∧
F ) , ACCpl) | F ∈ MC (FO)} .

This management function is obviously lc-preserving. Fur-
ther refinements, e.g., based on additional preferences among
bridge rules, are straightforward.

5.2 Global consistency
Previous work on inconsistency management in MCS (cf. Eiter
et al. [2010]) introduced two basic notions: diagnoses and
explanations. The former is consistency-based and intuitively
characterizes bridge rules and corresponding modifications to
obtain a consistent MCS, the latter is entailment-based and
gives bridge rules that create resp. inhibit inconsistency. Both
notions extend to mMCS.

Let brM denote the set of all bridge rules of an mMCS M ,
let hd(R) = {hd(r) | r ∈ R} for R ⊆ brM , and let M [R]
denote the mMCS where only bridge rules in R occur.

A diagnosis is a pair of sets of bridge rules, such that: if
the rules in the first set are deactivated, and the rules in the
second set are added in unconditional form (an extremal form
of strengthening sufficient to detect culprit rules) the mMCS
becomes consistent (i.e., admits an equilibrium). Formally,
given an mMCS M , a diagnosis of M is a pair (D1, D2),
D1, D2 ⊆ brM , s.t. M [brM \D1 ∪ hd(D2)] 6|= ⊥. D±(M)
is the set of all such diagnoses and D±m(M) denotes the set of
all pointwise subset-minimal diagnoses.

An explanation is a pair of sets of bridge rules, such that
their presence, resp. non-applicability, causes a relevant incon-
sistency in the given mMCS. Formally, given an mMCSM , an
explanation of M is a pair (E1, E2) of sets E1, E2 ⊆ brM s.t.
for all (R1, R2) where E1 ⊆ R1 ⊆ brM and R2 ⊆ brM \E2,
it holds that M [R1 ∪ hd(R2)] |= ⊥. E±(M) denotes the set
of all inconsistency explanations of M , and E±m(M) the set
of all pointwise subset-minimal ones.

Example 8 (ctd). Suppose to improve Mph by adding a
further bridge rule r1 : insert(t)← not(4 : t) to br1, where
t= ineff (water , leg pneu). It should ensure that water is
considered ineffective, even if C4 does not derive this. The
resulting mMCS M ′ph is inconsistent: if t 6∈ S4, then t ∈ S1

must hold, implying t ∈ S4, a contradiction; if t ∈ S4 then
t 6∈ S1 follows, which implies t 6∈ S4, again a contradiction.

Let r2 be the rule of form upd(t)← (1 : t) in br4. Then
M ′ph has one minimal explanation, ({r1, r2}, {r1, r2}), and 4
minimal diagnoses: ({r1}, ∅), ({r2}, ∅), (∅, {r1}), (∅, {r2}).

One of the basic functions of context managers is to ensure
an acceptable belief set of a context regardless of its applicable
operational statements. We call a context Ci with knowledge
base kbi in an mMCs M totally coherent iff for every belief
state S ofM some (kb′,ACC i) ∈ mng i(appi(S), kbi) exists
s.t. ACC i(kb′) 6= ∅; and Ci totally incoherent iff no belief
state S fulfills the previous condition.

Note that any context with an lc-preserving management
function is totally coherent; the opposite need not be the case.
Example 9 (ctd). All contexts of Mph and M ′ph are totally
coherent. Indeed, for C2 and C3 this holds trivially, as they
have no bridge rules. Similarly, for C1 each insertion of tuples
yields a knowledge base with an acceptable belief set (as eff
and ineff may share tuples, the belief set may be regarded to
be inconsistent). ForC4 we observe that the logic program has
no stable model only if eff (X,B) and not eff (X,B) are de-
rived for some (X,B). The atom not eff (X,B) however, can
only hold for atoms added through the upd operation whose
semantics guarantees that eff (X,B) is no longer derivable.
Therefore C4 has always an acceptable belief set.

This shows that total coherence can not prevent inconsis-
tency of the whole mMCS caused by cyclic information flow.

On the other hand, context managers can ensure the exis-
tence of diagnoses. To guarantee the existence of a diagnosis
for an MCS M , Eiter et al. [2010] require that M [∅] is consis-
tent. For mMCS we can replace this premise by the consider-
ably weaker assumption that no context is totally incoherent.
Proposition 3. Let M be an inconsistent mMCS. Then
D±(M) 6= ∅ iff no context of M is totally incoherent.

The following proposition establishes that all possible in-
consistencies are caused by cycles given that all context man-
agers are totally coherent. Note, however, that not every
cycle causes inconsistency, and that due to potential non-
monotonicity inside contexts the number of negative beliefs
in a cycle is not relevant. Let M = (C1, . . . , Cn) be an
mMCS, we write ref r(i, j) iff r is a bridge rule of context Ci

and (Cj : p) occurs in the body of r. For an mMCS M and
r1, . . . , rk ∈ brM , we say that (r1, . . . , rk) forms a cycle iff
ref r1(i1, i2), . . . , ref rk−1

(ik−1, ik), and ref rk
(ik, i1) hold.

Proposition 4. Let M be an inconsistent mMCS with to-
tally coherent contexts. Then for every minimal explanation
(E1, E2) ∈ E±m(M) there exists a cycle (r1, . . . , rk) such that
E1 = {r1, . . . , rk}.

The (indirect) proof hinges on the following observations: if
no cycle of rules in E1 causes inconsistency, then there exists
a ‘leave’ context C causing inconsistency, contradicting total
coherence; by minimality the cycle contains all r ∈ E1.
Example 10 (ctd). For M ′ph and its minimal explanations
E±m(M ′ph) = {({r1, r2}, {r1, r2})}, (r1, r2) is a cycle.

Importantly, for acyclic—in particular for hierarchic—
mMCS, total coherency is sufficient for global consistency.
Corollary 1. Any acyclic, mMCS with totally coherent con-
texts has an equilibrium.



6 Complexity
We consider here the consistency problem CONS(M), i.e.,
given an mMCS M = (C1, . . . , Cn), decide whether it has
some equilibrium. For this, we can utilize output-projected
belief states similar as in Eiter et al. [2010]. For contextCi, let
OUT i be the set of all beliefs p occurring in the body of some
bridge rule in M . Then, the output-projection of a belief state
S = (S1, . . . , Sn) of M is the belief state S′ = (S′1, . . . , S

′
n),

S′i = Si ∩ OUT i, for 1 ≤ i ≤ n. For consistency checking,
we can concentrate on output-projections of equilibria:
Proposition 5. An mMCSM = (C1, . . . , Cn) is consistent iff
some output-projected belief state S′ = (S′1, . . . , S

′
n), exists

such that, for all 1 ≤ i ≤ n, S′i ∈ {Si ∩ OUT i | Si ∈
ACC i(kb′i) ∧ (kb′i,ACC i) ∈ mng i(appi(S

′), kbi)}.
Generalizing Eiter et al. [2010], let the context complexity

of Ci be the complexity of the following problem:
(CC) Decide, given a set Oi of operator statements and S′i ⊆

OUT i, whether some (kb′i,ACC i) ∈ mng i(Oi, kbi) and
Si ∈ ACC i(kb′i) exist s.t. S′i = Si ∩OUT i.

Here, Ci is explicitly represented by kbi and br i, and the logic
suite is implicit, i.e., an oracle decides existence of Si. The
context complexity CC(M) of an mMCS M is a (smallest)
upper bound for the context complexity classes of all Ci.

Depending on CC(M), the complexity of consistency check-
ing for some complexity classes is shown in the following
table, where i ≥ 1, and entries denote membership results,
resp. completeness results if CC is hard for some Ci:

CC(M) in P ΣP
i ∆P

i+1 PSPACE EXPTIME

CONS(M) NP ΣP
i ΣP

i+1 PSPACE EXPTIME

Using simple insert/delete management, an example of
CC(M) in P would be an mMCS built on defeasible logic
(cf. Maher [2001]), and one for NP (resp., ΣP

2 ) using normal
(disjunctive) answer set programs. Argumentation context sys-
tems [Brewka and Eiter, 2009] provide examples of mMCSs
with context complexity in ∆P

3 ; examples for PSPACE and
EXPTIME can be found, e.g., among modal and descrip-
tion logics. Such contexts also have respective hard instances.

Problem CC intuitively consists of two subproblems:
(MC) compute some (kb′i,ACC i) ∈ mng i(Oi, kbi) and
(EC) decide whether Si ∈ ACC i(kb′i) exists s.t. S′i =
Si ∩OUT i. However, it makes sense to analyze consistency
depending on CC: often MC is solvable in polynomial time
(perhaps nondeterministically and/or with the help of an ora-
cle) or polynomial space, but kb′i may become exponentially
large (e.g., using a KB update or revision operator), neverthe-
less its explicit construction is avoidable for solving EC. If the
output of MC remains polynomial, then the complexity of CC
can suitably be characterized in terms of MC (e.g., maximal
consistent subsets of a propositional theory) and EC. We leave
more detailed results for an extended version.

7 Conclusion
Zhao et al. [2009] point out that simplified MCSs, where all
bridge rules are of the form a ← (ci : a), are important for
practical matters. Such MCSs are less expressive, as com-
plex rule bodies and negation (thus nonmonotonic information

flow) are not supported. In the presence of context managers,
however, an analogous restriction does not impair expressivity:
using, e.g., bridge rules o(ci,a)(b)← (ci : a) with designated
operations o(ci,a), the management functions can emulate any
bridge rule (1). In fact, every MCS M can be easily trans-
formed into such an mMCS M ′ having the same equilibria.

An interesting issue for future work are refined semantics
for mMCS to discriminate among equilibria, such as an ex-
tension of minimal or grounded equilibria [Brewka and Eiter,
2007] to mMCS. Moreover, as mMCS may yield alternative
knowledge bases, preference of equilibria may be based on
preference of alternatives. In particular for consistency restor-
ing, minimality of change seems natural. Investigating this
and developing mMCS implementations are on our agenda.
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