
An Introduction to Answer Sets
Gerhard Brewka

brewka@informatik.uni-leipzig.de

Universität Leipzig

Answer Sets – p.1/20



Outline

1. Why are answer sets interesting?
2. How are they defined

for definite programs?
for normal programs?
for extended programs?

3. How can they be used for problem solving?

Answer Sets – p.2/20



Why are they interesting?

• provide meaning to logic programs with
default negation not

• support problem solving paradigm where
models (not theorems) represent solutions

• interesting implementations: dlv, smodels

Answer Sets – p.3/20



How to define a semantics

normally:
• models = truth assignment to atoms
• represent what is possible
• can be identified with the set of true atoms

here:
• answer sets, that is sets of literals
• represent acceptable sets of beliefs
• sets of atoms not sufficient

Answer Sets – p.4/20



Definite programs

Syntax of rules:

A← B1, . . . , Bn

where A and the Bi are ground atoms.

A is called head, B1, . . . , Bn body of the rule.
← can be omitted if n = 0 (fact).

Answer Sets – p.5/20



Answer sets of definite programs

Let S be a set of atoms, P a definite program.
• S is closed under P iff A ∈ S whenever

A← B1, . . . , Bn ∈ P and B1, . . . , Bn ∈ S.
• S is grounded in P iff A ∈ S implies there is a

derivation for A from P .

Answer set: unique set of atoms closed and
grounded in P , denoted Cn(P ).

Answer Sets – p.6/20



Reminder

Derivation of A from P :
sequence (r1, ..., rn) of rules in P such that
• A head of rn and
• each atom appearing in body of a rule is head

of a rule earlier in the sequence.

Answer Sets – p.7/20



Remark

Cn(P ) is equivalent to
• the minimal set closed under P and
• the minimal model of P , where← is read as

implication, “,” as logical and.

Answer Sets – p.8/20



Normal logic programs

Syntax of rules:

A← B1, . . . , Bn, not C1, . . . , notCm

where A, the Bi and the Cj are ground atoms.

Note: not C reads: C is not believed!

Answer Sets – p.9/20



Answer sets of normal programs

Let S be a set of atoms, P a normal program.
• S closed under P iff A ∈ S whenever

A← B1, . . . , Bn, notC1, . . . , not Cm ∈ P ,
B1, . . . , Bn ∈ S and C1, . . . , Cm 6∈ S.

• S is grounded in P iff A ∈ S implies there is a
derivation for A from P valid in S

Answer sets: sets of atoms closed and grounded
in P (also called stable models).

Answer Sets – p.10/20



Valid derivations

• S defeats A← B1, . . . , Bn, notC1, . . . , not Cm

iff Cj ∈ S, j ∈ {1, . . . , m}.

• derivation valid in S iff it is based on rules
undefeated by S (disregarding not-literals)

Answer Sets – p.11/20



Extended logic programs

Syntax of rules:

A← B1, . . . , Bn, not C1, . . . , notCm

where A, the Bi and the Cj are ground literals.

2 types of negation:
• classical negation ¬
• default negation not

Answer Sets – p.12/20



Answer sets of extended programs

S set of literals, P extended program.
• S closed under P iff A ∈ S whenever

A← B1, . . . , Bn, notC1, . . . , not Cm ∈ P ,
B1, . . . , Bn ∈ S and C1, . . . , Cm 6∈ S, or
L,¬L ∈ S for some L.

• S grounded in P iff A ∈ S implies there is a
derivation for A from P valid in S.

Answer sets:
sets of literals closed and grounded in P

Answer Sets – p.13/20



Remark

To check whether S is answer set of P

• generate the S-reduct P S of P :

1. delete rules with not Ci in body and Ci ∈ S,
2. delete all not-literals from remaining rules.

• check whether S = Cn(P S).

Answer Sets – p.14/20



Answer set programming

• represent problem such that solutions are
(parts of) answer sets

• commonly used method: generate and test

Observation: if P does not contain Q, then

Q← not Q, body

eliminates answer sets satisfying body.
Abbreviation: ← body

Answer Sets – p.15/20



Variables in programs

• definition of answer sets for propositional
programs

• variables useful for problem descriptions
• ⇒ rule with variables as shorthand for all

ground instances of the rule
• ASP system: ground instantiator + solver
• instantiator produces ground version of

program, solver computes its answer sets

Answer Sets – p.16/20



Graph coloring

Description of graph:
node(v1), ..., node(vn), edge(vi, vj), . . .

Generate:
col(X, r)← node(X), not col(X, b), not col(X, g)
col(X, b)← node(X), not col(X, r), not col(X, g)
col(X, g)← node(X), not col(X, r), not col(X, b)

Test:
← edge(X, Y ), col(X, Z), col(Y, Z)

Answer sets contain solution to problem!

Answer Sets – p.17/20



Meeting scheduling

Problem description:
meeting(m1), . . . ,meeting(mn)

time(t1), . . . , time(ts)

room(r1), . . . , room(rm)

person(p1), . . . ,meeting(pk)

par(p1,m1), . . . , par(p2,m3), . . .

Problem independent part, generate:
at(M,T )← meeting(M), time(T ), not¬at(M,T )

¬at(M,T )← meeting(M), time(T ), not at(M,T )

in(M,R)← meeting(M), room(R), not¬in(M,R)

¬in(M,R)← meeting(M), room(R), not in(M,R)

Answer Sets – p.18/20



Meeting scheduling, test

Each meeting has assigned time and room:
timeassigned(M)← at(M,T )

roomassigned(M)← in(M,R)

← meeting(M), not timeassigned(M)

← meeting(M), not roomassigned(M)

No meeting has more than 1 time and room:
← meeting(M), at(M,T ), at(M,T ′), T 6= T ′

← meeting(M), in(M,R), in(M,R′), R 6= R′

Meetings at same time need different rooms:
← in(M,X), in(M ′, X), at(M,T ), at(M ′, T ),M 6= M ′

Meetings with same person need different times:
← par(P,M), par(P,M ′),M 6= M ′, at(M,T ), at(M ′, T )

Answer Sets – p.19/20



Things to remember

• answer sets are acceptable sets of beliefs
• straightforward for definite programs: Cn(P )

• more difficult with default negation:
self-referential notion of groundedness

• literals needed for extended programs
• support model based problem solving

Answer Sets – p.20/20


	Outline
	Why are they interesting?
	 How to define a semantics 
	Definite programs
	Answer sets of definite programs
	Reminder
	Remark
	Normal logic programs
	Answer sets of normal programs
	Valid derivations
	Extended logic programs
	Answer sets of extended programs
	Remark
	Answer set programming
	Variables in programs
	Graph coloring
	Meeting scheduling
	Meeting scheduling, test
	Things to remember

