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Outline

1. Why are answer sets interesting?
2. How are they defined

for definite programs?
for normal programs?
for extended programs?

3. How can they be used for problem solving?
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Why are they interesting?

• provide meaning to logic programs with
default negation not

• support problem solving paradigm where
models (not theorems) represent solutions

• interesting implementations: dlv, smodels
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How to define a semantics

normally:
• models = truth assignment to atoms
• represent what is possible
• can be identified with the set of true atoms

here:
• answer sets, that is sets of literals
• represent acceptable sets of beliefs
• sets of atoms not sufficient
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Definite programs

Syntax of rules:

A← B1, . . . , Bn

where A and the Bi are ground atoms.

A is called head, B1, . . . , Bn body of the rule.
← can be omitted if n = 0 (fact).
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Answer sets of definite programs

Let S be a set of atoms, P a definite program.
• S is closed under P iff A ∈ S whenever

A← B1, . . . , Bn ∈ P and B1, . . . , Bn ∈ S.
• S is grounded in P iff A ∈ S implies there is a

derivation for A from P .

Answer set: unique set of atoms closed and
grounded in P , denoted Cn(P ).
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Reminder

Derivation of A from P :
sequence (r1, ..., rn) of rules in P such that
• A head of rn and
• each atom appearing in body of a rule is head

of a rule earlier in the sequence.
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Remark

Cn(P ) is equivalent to
• the minimal set closed under P and
• the minimal model of P , where← is read as

implication, “,” as logical and.
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Normal logic programs

Syntax of rules:

A← B1, . . . , Bn, not C1, . . . , notCm

where A, the Bi and the Cj are ground atoms.

Note: not C reads: C is not believed!
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Answer sets of normal programs

Let S be a set of atoms, P a normal program.
• S closed under P iff A ∈ S whenever

A← B1, . . . , Bn, notC1, . . . , not Cm ∈ P ,
B1, . . . , Bn ∈ S and C1, . . . , Cm 6∈ S.

• S is grounded in P iff A ∈ S implies there is a
derivation for A from P valid in S

Answer sets: sets of atoms closed and grounded
in P (also called stable models).
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Valid derivations

• S defeats A← B1, . . . , Bn, notC1, . . . , not Cm

iff Cj ∈ S, j ∈ {1, . . . , m}.

• derivation valid in S iff it is based on rules
undefeated by S (disregarding not-literals)
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Extended logic programs

Syntax of rules:

A← B1, . . . , Bn, not C1, . . . , notCm

where A, the Bi and the Cj are ground literals.

2 types of negation:
• classical negation ¬
• default negation not
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Answer sets of extended programs

S set of literals, P extended program.
• S closed under P iff A ∈ S whenever

A← B1, . . . , Bn, notC1, . . . , not Cm ∈ P ,
B1, . . . , Bn ∈ S and C1, . . . , Cm 6∈ S, or
L,¬L ∈ S for some L.

• S grounded in P iff A ∈ S implies there is a
derivation for A from P valid in S.

Answer sets:
sets of literals closed and grounded in P
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Remark

To check whether S is answer set of P

• generate the S-reduct P S of P :

1. delete rules with not Ci in body and Ci ∈ S,
2. delete all not-literals from remaining rules.

• check whether S = Cn(P S).

Answer Sets – p.14/20



Answer set programming

• represent problem such that solutions are
(parts of) answer sets

• commonly used method: generate and test

Observation: if P does not contain Q, then

Q← not Q, body

eliminates answer sets satisfying body.
Abbreviation: ← body
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Variables in programs

• definition of answer sets for propositional
programs

• variables useful for problem descriptions
• ⇒ rule with variables as shorthand for all

ground instances of the rule
• ASP system: ground instantiator + solver
• instantiator produces ground version of

program, solver computes its answer sets

Answer Sets – p.16/20



Graph coloring

Description of graph:
node(v1), ..., node(vn), edge(vi, vj), . . .

Generate:
col(X, r)← node(X), not col(X, b), not col(X, g)
col(X, b)← node(X), not col(X, r), not col(X, g)
col(X, g)← node(X), not col(X, r), not col(X, b)

Test:
← edge(X, Y ), col(X, Z), col(Y, Z)

Answer sets contain solution to problem!
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Meeting scheduling

Problem description:
meeting(m1), . . . ,meeting(mn)

time(t1), . . . , time(ts)

room(r1), . . . , room(rm)

person(p1), . . . ,meeting(pk)

par(p1,m1), . . . , par(p2,m3), . . .

Problem independent part, generate:
at(M,T )← meeting(M), time(T ), not¬at(M,T )

¬at(M,T )← meeting(M), time(T ), not at(M,T )

in(M,R)← meeting(M), room(R), not¬in(M,R)

¬in(M,R)← meeting(M), room(R), not in(M,R)
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Meeting scheduling, test

Each meeting has assigned time and room:
timeassigned(M)← at(M,T )

roomassigned(M)← in(M,R)

← meeting(M), not timeassigned(M)

← meeting(M), not roomassigned(M)

No meeting has more than 1 time and room:
← meeting(M), at(M,T ), at(M,T ′), T 6= T ′

← meeting(M), in(M,R), in(M,R′), R 6= R′

Meetings at same time need different rooms:
← in(M,X), in(M ′, X), at(M,T ), at(M ′, T ),M 6= M ′

Meetings with same person need different times:
← par(P,M), par(P,M ′),M 6= M ′, at(M,T ), at(M ′, T )
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Things to remember

• answer sets are acceptable sets of beliefs
• straightforward for definite programs: Cn(P )

• more difficult with default negation:
self-referential notion of groundedness

• literals needed for extended programs
• support model based problem solving
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