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1. Background and Motivation

Classical logic allows us to represent universal statements:

∀x .PhDstudent(x)→ Student(x)

Useful, e.g. for concept definitions or in mathematics

Less useful to represent generic statements which may have
exceptions:

Professors teach ... unless they are on sabbatical.
Birds fly ... unless they are penguins.
Owls hunt at night ... unless they live in a zoo.
Students hate theoretical computer science ... unless they are very
clever.
After spending 2 hours in the doctor’s waiting room patients get
angry ... unless they are close to finishing a proof.
...
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A solution?

Most of our commonsense knowledge is of this kind

What can we do to represent it adequately?

What if instead of ∀x .Bird(x)→ Flies(x) we use

∀x .Bird(x) ∧ ¬Ab(x)→ Flies(x)

and add

∀x .Ab(x)↔ Penguin(x) ∨Ostrich(x) ∨ Injured(x) ∨ . . .

Problem 1: no exhaustive list of abnormalities.

Problem 2: does not give us Flies(tweety) unless tweety is known
not to be an exception.
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How to use generic information

Want to draw conclusions from generic information as long as
nothing indicates an exception.

If additional information tells us something is abnormal, retract
former conclusion.

⇒ Conclusions do not grow monotonically with premises.

Classical logic cannot model this, as it is monotonic:

X ⊆ Y ⇒ Th(X ) ⊆ Th(Y ).

Why? q follows from X if q holds in all models of X . Models of Y a
subset, thus q holds in all of them as well.

Observation led to the AI field of nonmonotonic reasoning, active
for over 30 years.
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Conflicting Defaults

Defaults may give rise to conflicting conclusions:
(1) Quakers normally are pacifists.
(2) Republicans normally are not pacifists.
(3) Nixon is a quaker and a republican.

(1) and (2) conflicting.

Nothing wrong with the defaults!

Different approaches to deal with this:

some apply none of the conflicting defaults,
most generate different acceptable belief sets (extensions)
leave open whether to use them sceptically (p true in all of them)
or credulously (p true in some of them, or in a particular one).
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2. The Closed World Assumption

Check the QuantLA Spring School time table

Question: Is Franz teaching on Friday?
Your answer (presumably): No

Why is this answer correct?

Does not follow from the explicit information in the time table

But: follows from this information assuming that the list of courses
is complete

You (presumably) used this assumption, and do so in many
everyday contexts
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The Closed World Assumption, ctd.

In many situations way more negative than positive facts.

Communication convention: represent the latter only, leave the
former implicit.

train/flight schedules
TV programs
library catalogues
list of lectures at a spring school

Know how to infer negative information based on completeness
assumption.
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Reiter’s formalization

Let KB be a set of formulas, define new form of entailment under
CWA:

KB |=c α iff KB ∪ Negs |= α

where Negs = {¬p | p atomic and KB 6|= p}

|=c nonmonotonic, for instance {a} |=c ¬b whereas {a,b} 6|=c ¬b

CWA makes knowledge complete: for arbitrary α (without
quantifiers) we have KB |=c α or KB |=c ¬α.

Recursive query evaluation; queries reduced to atomic case.

Results extend to quantified formulas if we add domain closure
assumption (each object named by constant) and unique names
assumption (different constants denote different objects).
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A major problem

Works for simple cases only, e.g. KB a set of atoms.

Assume KB |= (p ∨ q), but KB 6|= p and KB 6|= q.

Now ¬p ∈ Negs and ¬q ∈ Negs, thus KB ∪ Negs inconsistent.

Weaker versions of CWA avoiding inconsistency were proposed.

CWA best viewed as a method for restricted contexts (e.g.
databases).

Standard Reference:

Reiter, Raymond (1978). On Closed World Data Bases. In Gallaire, H.;
Minker, J., Logic and Data Bases. Plenum Press. pp. 119-140.
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2. Argumentation

Argumentation highly active area in AI.

Idea: to construct acceptable set(s) of beliefs from given KB:

1 construct arguments (beliefs with associated reasons),
2 determine jointly acceptable arguments (extensions),
3 accept their conclusions.

Assumption: step 2 can be done independently and abstractly.

Dung’s Abstract Argumentation Frameworks widely used tool.
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Argumentation Frameworks

Abstract Argumentation

Arguments “atomic”, their structure irrelevant.

All that matters are attacks among arguments.

Argumentation frameworks (AFs) represent attack relations.

Semantics formalize different intuitions about how to solve
conflicts and how to pick acceptable arguments.

Semantics map an AF to subsets of its arguments (extensions).

Nonmonotonic: new argument may throw out what was accepted.
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Definition

Argumentation Frameworks

An argumentation framework (AF) is a pair (A,R) where
A is a set of arguments,
R ⊆ A× A is a relation representing “attacks”. (“defeats”)
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b c d ea
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Semantics: minimal requirement no conflicts

Conflict-Free Set
Given an AF F = (A,R).
A set S ⊆ A is conflict-free in F , if, for each a,b ∈ S, (a,b) /∈ R.

Example

b c d ea

cf (F ) =
{
{a, c},
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No undefended attacked arguments

Admissible Set
Given an AF F = (A,R). A set S ⊆ A is admissible in F , if

S is conflict-free in F
each a ∈ S is defended by S in F ,

a ∈ A is defended by S in F , if for each b ∈ A with (b,a) ∈ R, there
exists a c ∈ S, such that (c,b) ∈ R.

Example

b c d ea

adm(F ) =
{
{a, c},
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Want all defended arguments

Complete Set
Given an AF F = (A,R). A set S ⊆ A is complete in F , if

S is admissible in F
each a ∈ A defended by S in F is contained in S

a ∈ A is defended by S in F , if for each b ∈ A with (b,a) ∈ R, there
exists a c ∈ S, such that (c,b) ∈ R.

Example

b c d ea

comp(F ) =
{
{a, c}, {a,d}, {a}, {c}, {d}, ∅

}
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An inherently skeptical approach

Grounded Extension
Given an AF F = (A,R). A set S ⊆ A is grounded in F , if

S is complete in F
for each T ⊆ A complete in F , T 6⊂ S

Proposition [Dung 95]: The grounded extension of an AF F = (A,R) is
given by the least fix-point of the operator ΓF : 2A → 2A, defined as
ΓF (S) = {a ∈ A | a is defended by S in F}

Example

b c d ea

ground(F ) =
{
{a, c}, {a,d},{a}

}
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A credulous approach

Stable Extension
Given an AF F = (A,R). A set S ⊆ A is stable in F , if

S is conflict-free in F
for each a ∈ A \ S, there exists a b ∈ S, such that (b,a) ∈ R.

Example

b c d ea

stable(F ) =
{
{a, c},
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Stable Extension
Given an AF F = (A,R). A set S ⊆ A is stable in F , if

S is conflict-free in F
for each a ∈ A \ S, there exists a b ∈ S, such that (b,a) ∈ R.

Example

b c d ea

stable(F ) =
{
{a, c},{a,d}, {b,d},
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A credulous approach

Stable Extension
Given an AF F = (A,R). A set S ⊆ A is stable in F , if

S is conflict-free in F
for each a ∈ A \ S, there exists a b ∈ S, such that (b,a) ∈ R.

Example

b c d ea

stable(F ) =
{
{a, c},{a,d}, {b,d}, {a}, {b}, {c}, {d}, ∅

}
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Guaranteeing existence of extensions

Preferred Extension
Given an AF F = (A,R). A set S ⊆ A is preferred in F , if

S is admissible in F
for each T ⊆ A admissible in T , S 6⊂ T

Example

b c d ea

pref (F ) =
{
{a, c}, {a,d}, {a}, {c}, {d}, ∅

}
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Complexity

Relation between Semantics

 prefstable

ground

compl adm

Complexity

stable adm pref comp ground

Cred NP-c NP-c NP-c NP-c in P

Skept coNP-c (trivial) ˝P
2 -c in P in P

[Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Coste-Marquis et al. 05]
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Further remarks

AFs: simple graph representation of argumentation scenarios.

Various semantics model different intuitions how to select
reasonable argument sets.

BUT

Fixed meaning of links: attack; fixed acceptance condition for
args: no parent accepted.

Want more flexibility:
Links supporting arguments/positions,
Nodes not accepted unless supported,
Flexible means of combining attack and support.

Developed Dialectical Frameworks which can have arbitrary
relations among args.
Many options for adding quantities.
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