2.

The Language of First-order Logic

Declarative language

Before building system

before there can be learning, reasoning, planning, explanation ...

need to be able to express knowledge

Want a precise declarative language

• declarative: believe P = hold P to be <u>true</u>

cannot believe *P* without some sense of what it would mean for the world to satisfy *P*

• precise: need to know exactly

what strings of symbols count as sentences

what it means for a sentence to be true

(but without having to specify which ones are true)

Here: language of first-order logic

again: not the only choice

Alphabet

Logical symbols:

- Punctuation: (,), .
- Connectives: \neg , \land , \lor , \forall , \exists , =
- Variables: *x*, *x*₁, *x*₂, ..., *x'*, *x''*, ..., *y*, ..., *z*, ... Fixed meaning and use

like keywords in a programming language

Non-logical symbols

- Predicate symbols (like Dog)
- Function symbols (like bestFriendOf)
 Domain-dependent meaning and use
 like identifiers in a programming language

Have <u>arity</u>: number of arguments

arity 0 predicates: propositional symbols

arity 0 functions: constant symbols

Assume infinite supply of every arity

Note: not treating = as a predicate

Grammar

Terms

- 1. Every variable is a term.
- 2. If $t_1, t_2, ..., t_n$ are terms and *f* is a function of arity *n*, then $f(t_1, t_2, ..., t_n)$ is a term.

Atomic wffs (well-formed formula)

1. If $t_1, t_2, ..., t_n$ are terms and *P* is a predicate of arity *n*, then $P(t_1, t_2, ..., t_n)$ is an atomic wff.

2. If t_1 and t_2 are terms, then $(t_1=t_2)$ is an atomic wff.

Wffs

- 1. Every atomic wff is a wff.
- 2. If α and β are wffs, and v is a variable, then $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $\exists v.\alpha, \forall v.\alpha$ are wffs.

The propositional subset: no terms, no quantifiers

Atomic wffs: only predicates of 0-arity: $(p \land \neg(q \lor r))$

Notation

Occasionally add or omit (,), .

```
Use [,] and {,} also.
```

Abbreviations:

 $(\alpha \supset \beta)$ for $(\neg \alpha \lor \beta)$

safer to read as disjunction than as "if ... then ..."

 $(\alpha \equiv \beta)$ for $((\alpha \supset \beta) \land (\beta \supset \alpha))$

Non-logical symbols:

• Predicates: mixed case capitalized

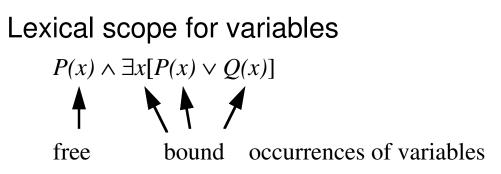
Person, Happy, OlderThan

• Functions (and constants): mixed case uncapitalized

fatherOf, successor, johnSmith

Variable scope

Like variables in programming languages, the variables in FOL have a <u>scope</u> determined by the quantifiers



A sentence: wff with no free variables (closed)

Substitution:

 $\alpha[v/t]$ means α with all free occurrences of the v replaced by term t

Note: written α_t^v elsewhere (and in book)

```
Also: \alpha[t_1,...,t_n] means \alpha[v_1/t_1,...,v_n/t_n]
```

Semantics

How to interpret sentences?

- what do sentences claim about the world?
- what does believing one amount to?

Without answers, cannot use sentences to represent knowledge

Problem:

cannot fully specify interpretation of sentences because non-logical symbols reach outside the language

So:

make clear dependence of interpretation on non-logical symbols

Logical interpretation:

specification of how to understand predicate and function symbols

Can be complex!

DemocraticCountry, IsABetterJudgeOfCharacterThan, favouriteIceCreamFlavourOf, puddleOfWater27

The simple case

There are objects.

some satisfy predicate P; some do not

Each interpretation settles extension of P.

borderline cases ruled in separate interpretations

Each interpretation assigns to function f a mapping from objects to objects.

functions always well-defined and single-valued

The FOL assumption:

this is all you need to know about the non-logical symbols to understand which sentences of FOL are true or false

In other words, given a specification of

- » what objects there are
- » which of them satisfy P
- » what mapping is denoted by f

it will be possible to say which sentences of FOL are true

Interpretations

Two parts: $\mathcal{G} = \langle D, I \rangle$

D is the domain of discourse

can be any non-empty set

not just formal / mathematical objects

e.g. people, tables, numbers, sentences, unicorns, chunks of peanut butter, situations, the universe

I is an interpretation mapping

If P is a predicate symbol of arity n,

 $I[P] \subseteq D \times D \times ... \times D$

an n-ary relation over D

for propositional symbols,

 $I[p] = \{\}$ or $I[p] = \{\langle \rangle\}$

In propositional case, convenient to assume

 $\mathcal{J} = I \in [prop. symbols \rightarrow \{true, false\}]$

If f is a function symbol of arity n,

 $I[f] \in [D \times D \times ... \times D \rightarrow D]$

an n-ary function over D

for constants, $I[c] \in D$

Denotation

In terms of interpretation \mathcal{S} , terms will denote elements of the domain D.

```
will write element as ||t||_{\mathcal{S}}
```

For terms with variables, the denotation depends on the values of variables

```
will write as ||t||_{\mathcal{J},\mu}
```

where $\mu \in [Variables \rightarrow D]$, called a <u>variable</u> assignment

Rules of interpretation:

```
1. \|v\|_{\mathfrak{Z},\mu} = \mu(v).

2. \|f(t_1, t_2, ..., t_n)\|_{\mathfrak{Z},\mu} = H(d_1, d_2, ..., d_n)

where H = I[f]

and d_i = \|t_i\|_{\mathfrak{Z},\mu}, recursively
```

Satisfaction

In terms of an interpretation $\ensuremath{\mathcal{I}}$, sentences of FOL will be either true or false.

Formulas with free variables will be true for some values of the free variables and false for others.

Notation:

will write as $\mathcal{J}, \mu \models \alpha$ " α is satisfied by \mathcal{J} and μ "

where $\mu \in [Variables \rightarrow D]$, as before

or $\mathcal{G} \models \alpha$, when α is a sentence

" α is true under interpretation \mathcal{J} "

or $\mathcal{G} \models S$, when S is a set of sentences

"the elements of S are true under interpretation \mathcal{S} "

And now the definition...

Rules of interpretation

1.
$$\mathfrak{I}, \mu \models P(t_1, t_2, ..., t_n)$$
 iff $\langle d_1, d_2, ..., d_n \rangle \in R$
where $R = I[P]$
and $d_i = ||t_i||_{\mathfrak{I},\mu}$, as on denotation slide
2. $\mathfrak{I}, \mu \models (t_1 = t_2)$ iff $||t_1||_{\mathfrak{I},\mu}$ is the same as $||t_2||_{\mathfrak{I},\mu}$
3. $\mathfrak{I}, \mu \models \neg \alpha$ iff $\mathfrak{I}, \mu \models \alpha$
4. $\mathfrak{I}, \mu \models (\alpha \land \beta)$ iff $\mathfrak{I}, \mu \models \alpha$ and $\mathfrak{I}, \mu \models \beta$
5. $\mathfrak{I}, \mu \models (\alpha \land \beta)$ iff $\mathfrak{I}, \mu \models \alpha$ or $\mathfrak{I}, \mu \models \beta$
6. $\mathfrak{I}, \mu \models \exists v \alpha$ iff for some $d \in D$, $\mathfrak{I}, \mu \{d; v\} \models \alpha$
7. $\mathfrak{I}, \mu \models \forall v \alpha$ iff for all $d \in D$, $\mathfrak{I}, \mu \{d; v\} \models \alpha$
where $\mu \{d; v\}$ is just like μ , except that $\mu(v) = d$.

For propositional subset:

 $\mathcal{J} \models p \quad \text{iff} \quad I[p] \neq \{\}$ and the rest as above

Entailment defined

Semantic rules of interpretation tell us how to understand all wffs in terms of specification for non-logical symbols.

But some connections among sentences are independent of the non-logical symbols involved.

e.g. If α is true under \mathcal{J} , then so is $\neg(\beta \land \neg \alpha)$, no matter what \mathcal{J} is, why α is true, what β is, ...

 $S \models \alpha$ iff for every \mathcal{I} , if $\mathcal{I} \models S$ then $\mathcal{I} \models \alpha$.

Say that *S* entails α or α is a logical consequence of *S*: In other words: for no \mathcal{J} , $\mathcal{J} \models S \cup \{\neg \alpha\}$. $S \cup \{\neg \alpha\}$ is <u>unsatisfiable</u>

Special case when S is empty: $|= \alpha$ iff for every \mathcal{S} , $\mathcal{S} |= \alpha$. Say that α is <u>valid</u>.

Note: { $\alpha_1, \alpha_2, ..., \alpha_n$ } |= α iff |= ($\alpha_1 \land \alpha_2 \land ... \land \alpha_n$) $\supset \alpha$ finite entailment reduces to validity

Why do we care?

We do not have access to user-intended interpretation of nonlogical symbols

But, with <u>entailment</u>, we know that if *S* is true in the intended interpretation, then so is α .

If the user's view has the world satisfying *S*, then it must also satisfy α .

There may be other sentences true also; but α is logically guaranteed.

```
So what about ordinary reasoning?
```

```
Dog(fido) Mammal(fido) ??
```

Not entailment!

There are logical interpretations where $I[Dog] \not\subset I[Mammal]$

Key idea of KR:

```
include such connections \underline{\text{explicitly}} in {\boldsymbol{\mathcal{S}}}
```

 $\forall x [\operatorname{Dog}(x) \supset \operatorname{Mammal}(x)]$

Get: $S \cup \{Dog(fido)\} \models Mammal(fido)$

the rest is just details...

Knowledge bases

KB is set of sentences

explicit statement of sentences believed (including any assumed connections among non-logical symbols)

KB $\mid = \alpha$ α is a further consequence of what is believed

- explicit knowledge: KB
- implicit knowledge: { $\alpha \mid KB \mid = \alpha$ }

Often non trivial: explicit me implicit

Example:

Three blocks stacked.

Top one is green.

Bottom one is not green.

A green B C non-green

Is there a green block directly on top of a non-green block?

A formalization

 $S = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$ all that is required

 $\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x,y)]$

Claim: $S \models \alpha$

Proof:

Let \mathcal{S} be any interpretation such that $\mathcal{S} \models S$.

Case 1: $\mathcal{G} \models \text{Green}(b)$. Case 2: $\Im \neq$ Green(b). $\therefore \mathcal{J} \models \text{Green}(b) \land \neg \text{Green}(c) \land \text{On}(b,c).$ $\therefore \mathcal{J} \models \neg \text{Green(b)}$ $\therefore \mathcal{J} \models \alpha$ $\therefore \mathcal{G} \models \text{Green}(a) \land \neg \text{Green}(b) \land \text{On}(a,b).$ $\therefore \mathcal{J} \models \alpha$ Either way, for any \mathcal{S} , if $\mathcal{S} \models S$ then $\mathcal{S} \models \alpha$.

So $S \models \alpha$. QED

Knowledge-based system

Start with (large) KB representing what is explicitly known

e.g. what the system has been told or has learned

Want to influence behaviour based on what is <u>implicit</u> in the KB (or as close as possible)

Requires reasoning

deductive inference:

process of calculating entailments of KB

i.e given KB and any $\alpha,$ determine if KB |= α

Process is <u>sound</u> if whenever it produces α , then KB |= α

does not allow for plausible assumptions that may be true in the intended interpretation

Process is <u>complete</u> if whenever KB $\mid = \alpha$, it produces α

does not allow for process to miss some α or be unable to determine the status of α