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Constraint Satisfaction Problems 

 

 

 

 A Quick Overview 

 (based on AIMA book slides) 
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Constraint satisfaction problems 

 What is a CSP? 

• Finite set of variables V1, V2, …, Vn 

• Nonempty domain of possible values for each variable  

DV1, DV2, … DVn 

• Finite set of constraints C1, C2, …, Cm 

• Each constraint Ci limits the values that variables can 

take, e.g., V1 ≠ V2 

 A state is an assignment of values to some or all 

variables. 

 Consistent assignment: assignment does not 

violate the constraints.  
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Constraint satisfaction problems 

 An assignment is complete when every variable 

has a value.  

 A solution to a CSP is a complete assignment 

that satisfies all constraints. 

 Some CSPs require a solution that maximizes an 

objective function.  

 Applications:  

• Scheduling the Hubble Space Telescope,  

• Floor planning for VLSI,  

• Map coloring,  

• Cryptography 



 

 
4 

Example: Map-Coloring 

 

 

 Variables:  WA, NT, Q, NSW, V, SA, T  

 Domains:  Di = {red,green,blue} 

 Constraints: adjacent regions must have different colors 

• e.g., WA ≠ NT 
—So (WA,NT) must be in {(red,green),(red,blue),(green,red), …}  
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Example: Map-Coloring 

Solutions are complete and consistent assignments,  

• e.g., WA = red, NT = green,Q = red,NSW = green, 

         V = red,SA = blue,T = green 
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Constraint graph 

 Binary CSP: each constraint relates  
two variables 

 

 Constraint graph:  

• nodes are variables 

• arcs are constraints 

 

 CSP benefits 

• Standard representation pattern 

• Generic goal and successor functions 

• Generic heuristics (no domain specific expertise). 

 

 Graph can be used to simplify search. 
—e.g. Tasmania is an independent subproblem. 
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Varieties of CSPs 

 Discrete variables 
• finite domains: 

—n variables, domain size d  O(dn) complete assignments 

—e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete) 

• infinite domains: 

—integers, strings, etc. 

—e.g., job scheduling, variables are start/end days for each job 

—need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3 

 

 Continuous variables 
• e.g., start/end times for Hubble Space Telescope observations 

• linear constraints solvable in polynomial time by linear 
programming 
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Varieties of constraints 

 Unary constraints involve a single variable,  
• e.g., SA ≠ green 

 

 Binary constraints involve pairs of variables, 
• e.g., SA ≠ WA 

 

 Higher-order constraints involve 3 or more variables 
• e.g., cryptarithmetic column constraints 

 

 Preference (soft constraints) e.g. red is better than 
green can be represented by a cost for each variable 
assignment  => Constrained optimization problems. 
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Example: Cryptarithmetic 

 Variables:        
F T U W R O X1 X2 X3 

 Domain: {0,1,2,3,4,5,6,7,8,9} 

 Constraints: Alldiff (F,T,U,W,R,O) 
• O + O = R + 10 · X1 

• X1 + W + W = U + 10 · X2 

• X2 + T + T = O + 10 · X3 

• X3 = F, T ≠ 0, F ≠ 0 
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CSP as a standard search problem 

 A CSP can easily be expressed as a standard 

search problem. 

• Initial State: the empty assignment {}. 

• Operators: Assign value to unassigned variable provided 

that there is no conflict. 

• Goal test: assignment consistent and complete. 

• Path cost: constant cost for every step. 

• Solution is found at depth n, for n variables 

• Hence depth first search can be used 
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Backtracking search 

 Variable assignments are commutative,  
• Eg [ WA = red then NT = green ]  

equivalent to  [ NT = green then WA = red ] 

 

 Only need to consider assignments to a single variable at 
each node 

 b = d and there are dn leaves 

 

 

 Depth-first search for CSPs with single-variable 
assignments is called backtracking search 

 

 Backtracking search basic uninformed algorithm for CSPs 

 

 Can solve n-queens for n ≈ 25 
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Backtracking search 

function BACKTRACKING-SEARCH(csp) % returns a solution or failure 

 return RECURSIVE-BACKTRACKING({} , csp) 

 

function RECURSIVE-BACKTRACKING(assignment, csp) % returns a solution or failure 

 if assignment is complete then return assignment 

 var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 

  if value is consistent with assignment according to CONSTRAINTS[csp] 

 then 

   add {var=value} to assignment  

   result  RECURSIVE-BACKTRACKING(assignment, csp) 

   if result  failure  then return result 

   remove {var=value} from assignment 

 return failure 
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Backtracking example 



 

 
14 

Backtracking example 



 

 
15 

Backtracking example 
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Backtracking example 
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Improving backtracking efficiency 

General-purpose methods can give huge speed gains: 

 

• Which variable should be assigned next? 

• In what order should its values be tried? 

• Can we detect inevitable failure early? 
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Most constrained variable 

 Most constrained variable: 

choose the variable with the fewest legal values 

 

 

 

 

 a.k.a. minimum remaining values (MRV) heuristic 
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Most constraining variable 

 Tie-breaker among most constrained variables 

 Most constraining variable: 

• choose the variable with the most constraints on remaining 

variables 
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Least constraining value 

 Given a variable, choose the least constraining 

value: 

• the one that rules out the fewest values in the remaining 

variables 

 

 

 

 

 

 

 Combining these heuristics makes 1000 queens 

feasible 



 

 
21 

Forward Checking 

 Idea:  

• Keep track of remaining legal values for unassigned 

variables 

• Terminate search when any variable has no legal values 
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Forward checking 

 Idea:  

• Keep track of remaining legal values for unassigned 

variables 

• Terminate search when any variable has no legal values 



 

 
23 

Forward checking 

 Idea:  

• Keep track of remaining legal values for unassigned 
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Forward checking 

 Idea:  

• Keep track of remaining legal values for unassigned 

variables 

• Terminate search when any variable has no legal values 

 

 

 

 

 

 

 No more value for SA: backtrack 
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Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

[4-Queens slides copied from B.J. Dorr] 
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Constraint Propagation 

 Simplest form of propagation makes each arc consistent 

 Arc X Y (link in constraint graph) is consistent iff 

  

for every value x of X there is some allowed y 
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Arc consistency 

 Simplest form of propagation makes each arc consistent 

 X Y is consistent iff 

  

for every value x of X there is some allowed y 

 



 

 
43 

Arc consistency 

 Simplest form of propagation makes each arc consistent 

 X Y is consistent iff 

  

for every value x of X there is some allowed y 

 

 

 

 

 

 If X loses a value, neighbors of X need to be rechecked 
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Arc consistency 

 Simplest form of propagation makes each arc consistent 

 X Y is consistent iff 

  

for every value x of X there is some allowed y 

 

 

 

 

 

 

 

 

 If X loses a value, neighbors of X need to be rechecked 

 Arc consistency detects failure earlier than forward 
checking 

 Can be run as a preprocessor or after each assignment 
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function AC-3(csp) % returns the CSP, possibly with reduced domains 

 inputs: csp, a binary csp with variables {X1, X2, … , Xn}  

 local variables: queue, a queue of arcs initially the arcs in csp 

 while queue is not empty do 

  (Xi, Xj)  REMOVE-FIRST(queue) 

  if REMOVE-INCONSISTENT-VALUES(Xi, Xj)  then 

   for each Xk in NEIGHBORS[Xi ] do 

   add (Xk, Xi) to queue  

 

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) % returns true iff a value is removed 

 removed   false 

 for each x in DOMAIN[Xi] do 

  if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj 

  then delete x from DOMAIN[Xi]; removed   true 

 return removed 

 

 

Arc Consistency Algorithm AC-3 

Time complexity: O(n2d3) 
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Local Search for CSPs 

 Hill-climbing methods typically work with "complete" 
states, i.e., all variables assigned 

 

 To apply to CSPs: 

 

• allow states with unsatisfied constraints 

• operators reassign variable values 

 

 Variable selection: randomly select any conflicted variable 

 

 Value selection by min-conflicts heuristic: 

 

• choose value that violates the fewest constraints 

• i.e., hill-climb with h(n) = number of violated constraints 
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Example: n-queens 

 States: 4 queens in 4 columns (44 = 256 states) 

 Actions: move queen in column 

 Goal test: no attacks 

 Evaluation: h(n) = number of attacks 

 

 

 

 

 

 Given random initial state, we can solve n-queens for large n 

with high probability 
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Real-world CSPs 

 Assignment problems 

• e.g., who teaches what class 

 Timetabling problems 

• e.g., which class is offered when and where? 

 Transportation scheduling 

 Factory scheduling 

 Notice that many real-world problems involve 

real-valued variables 
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Summary 

 CSPs are a special kind of problem: 
 

• states defined by values of a fixed set of variables 

• goal test defined by constraints on variable values 
 

 Backtracking = depth-first search with one variable 
assigned per node 

 

 Variable ordering and value selection heuristics help 
significantly 

 

 Forward checking prevents assignments that guarantee 
later failure 

 

 Constraint propagation (e.g., arc consistency) additionally 
constrains values and detects inconsistencies 

 

 Iterative min-conflicts is usually effective in practice 


