

1

Constraint Satisfaction Problems

 A Quick Overview

 (based on AIMA book slides)

2

Constraint satisfaction problems

 What is a CSP?

• Finite set of variables V1, V2, …, Vn

• Nonempty domain of possible values for each variable

DV1, DV2, … DVn

• Finite set of constraints C1, C2, …, Cm

• Each constraint Ci limits the values that variables can

take, e.g., V1 ≠ V2

 A state is an assignment of values to some or all

variables.

 Consistent assignment: assignment does not

violate the constraints.

3

Constraint satisfaction problems

 An assignment is complete when every variable

has a value.

 A solution to a CSP is a complete assignment

that satisfies all constraints.

 Some CSPs require a solution that maximizes an

objective function.

 Applications:

• Scheduling the Hubble Space Telescope,

• Floor planning for VLSI,

• Map coloring,

• Cryptography

4

Example: Map-Coloring

 Variables: WA, NT, Q, NSW, V, SA, T

 Domains: Di = {red,green,blue}

 Constraints: adjacent regions must have different colors

• e.g., WA ≠ NT
—So (WA,NT) must be in {(red,green),(red,blue),(green,red), …}

5

Example: Map-Coloring

Solutions are complete and consistent assignments,

• e.g., WA = red, NT = green,Q = red,NSW = green,

 V = red,SA = blue,T = green

6

Constraint graph

 Binary CSP: each constraint relates
two variables

 Constraint graph:

• nodes are variables

• arcs are constraints

 CSP benefits

• Standard representation pattern

• Generic goal and successor functions

• Generic heuristics (no domain specific expertise).

 Graph can be used to simplify search.
—e.g. Tasmania is an independent subproblem.

7

Varieties of CSPs

 Discrete variables
• finite domains:

—n variables, domain size d  O(dn) complete assignments

—e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)

• infinite domains:

—integers, strings, etc.

—e.g., job scheduling, variables are start/end days for each job

—need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

 Continuous variables
• e.g., start/end times for Hubble Space Telescope observations

• linear constraints solvable in polynomial time by linear
programming

8

Varieties of constraints

 Unary constraints involve a single variable,
• e.g., SA ≠ green

 Binary constraints involve pairs of variables,
• e.g., SA ≠ WA

 Higher-order constraints involve 3 or more variables
• e.g., cryptarithmetic column constraints

 Preference (soft constraints) e.g. red is better than
green can be represented by a cost for each variable
assignment => Constrained optimization problems.

9

Example: Cryptarithmetic

 Variables:
F T U W R O X1 X2 X3

 Domain: {0,1,2,3,4,5,6,7,8,9}

 Constraints: Alldiff (F,T,U,W,R,O)
• O + O = R + 10 · X1

• X1 + W + W = U + 10 · X2

• X2 + T + T = O + 10 · X3

• X3 = F, T ≠ 0, F ≠ 0

10

CSP as a standard search problem

 A CSP can easily be expressed as a standard

search problem.

• Initial State: the empty assignment {}.

• Operators: Assign value to unassigned variable provided

that there is no conflict.

• Goal test: assignment consistent and complete.

• Path cost: constant cost for every step.

• Solution is found at depth n, for n variables

• Hence depth first search can be used

11

Backtracking search

 Variable assignments are commutative,
• Eg [WA = red then NT = green]

equivalent to [NT = green then WA = red]

 Only need to consider assignments to a single variable at
each node

 b = d and there are dn leaves

 Depth-first search for CSPs with single-variable
assignments is called backtracking search

 Backtracking search basic uninformed algorithm for CSPs

 Can solve n-queens for n ≈ 25

12

Backtracking search

function BACKTRACKING-SEARCH(csp) % returns a solution or failure

 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) % returns a solution or failure

 if assignment is complete then return assignment

 var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

 if value is consistent with assignment according to CONSTRAINTS[csp]

 then

 add {var=value} to assignment

 result  RECURSIVE-BACKTRACKING(assignment, csp)

 if result  failure then return result

 remove {var=value} from assignment

 return failure

13

Backtracking example

14

Backtracking example

15

Backtracking example

16

Backtracking example

17

Improving backtracking efficiency

General-purpose methods can give huge speed gains:

• Which variable should be assigned next?

• In what order should its values be tried?

• Can we detect inevitable failure early?

18

Most constrained variable

 Most constrained variable:

choose the variable with the fewest legal values

 a.k.a. minimum remaining values (MRV) heuristic

19

Most constraining variable

 Tie-breaker among most constrained variables

 Most constraining variable:

• choose the variable with the most constraints on remaining

variables

20

Least constraining value

 Given a variable, choose the least constraining

value:

• the one that rules out the fewest values in the remaining

variables

 Combining these heuristics makes 1000 queens

feasible

21

Forward Checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

22

Forward checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

23

Forward checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

24

Forward checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

 No more value for SA: backtrack

25

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

[4-Queens slides copied from B.J. Dorr]

26

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

27

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

28

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

29

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2, , }

X2
{ , ,3,4}

30

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

31

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

32

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

33

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , , ,4}

34

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

35

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

36

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

37

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

38

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

39

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

40

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

41

Constraint Propagation

 Simplest form of propagation makes each arc consistent

 Arc X Y (link in constraint graph) is consistent iff



for every value x of X there is some allowed y

42

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff



for every value x of X there is some allowed y

43

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff



for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be rechecked

44

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff



for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be rechecked

 Arc consistency detects failure earlier than forward
checking

 Can be run as a preprocessor or after each assignment

45

function AC-3(csp) % returns the CSP, possibly with reduced domains

 inputs: csp, a binary csp with variables {X1, X2, … , Xn}

 local variables: queue, a queue of arcs initially the arcs in csp

 while queue is not empty do

 (Xi, Xj)  REMOVE-FIRST(queue)

 if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

 for each Xk in NEIGHBORS[Xi] do

 add (Xk, Xi) to queue

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) % returns true iff a value is removed

 removed  false

 for each x in DOMAIN[Xi] do

 if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj

 then delete x from DOMAIN[Xi]; removed  true

 return removed

Arc Consistency Algorithm AC-3

Time complexity: O(n2d3)

46

Local Search for CSPs

 Hill-climbing methods typically work with "complete"
states, i.e., all variables assigned

 To apply to CSPs:

• allow states with unsatisfied constraints

• operators reassign variable values

 Variable selection: randomly select any conflicted variable

 Value selection by min-conflicts heuristic:

• choose value that violates the fewest constraints

• i.e., hill-climb with h(n) = number of violated constraints

47

Example: n-queens

 States: 4 queens in 4 columns (44 = 256 states)

 Actions: move queen in column

 Goal test: no attacks

 Evaluation: h(n) = number of attacks

 Given random initial state, we can solve n-queens for large n

with high probability

48

Real-world CSPs

 Assignment problems

• e.g., who teaches what class

 Timetabling problems

• e.g., which class is offered when and where?

 Transportation scheduling

 Factory scheduling

 Notice that many real-world problems involve

real-valued variables

49

Summary

 CSPs are a special kind of problem:

• states defined by values of a fixed set of variables

• goal test defined by constraints on variable values

 Backtracking = depth-first search with one variable
assigned per node

 Variable ordering and value selection heuristics help
significantly

 Forward checking prevents assignments that guarantee
later failure

 Constraint propagation (e.g., arc consistency) additionally
constrains values and detects inconsistencies

 Iterative min-conflicts is usually effective in practice

