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Constraint Satisfaction Problems 

 

 

 

 A Quick Overview 

 (based on AIMA book slides) 
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Constraint satisfaction problems 

 What is a CSP? 

• Finite set of variables V1, V2, …, Vn 

• Nonempty domain of possible values for each variable  

DV1, DV2, … DVn 

• Finite set of constraints C1, C2, …, Cm 

• Each constraint Ci limits the values that variables can 

take, e.g., V1 ≠ V2 

 A state is an assignment of values to some or all 

variables. 

 Consistent assignment: assignment does not 

violate the constraints.  
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Constraint satisfaction problems 

 An assignment is complete when every variable 

has a value.  

 A solution to a CSP is a complete assignment 

that satisfies all constraints. 

 Some CSPs require a solution that maximizes an 

objective function.  

 Applications:  

• Scheduling the Hubble Space Telescope,  

• Floor planning for VLSI,  

• Map coloring,  

• Cryptography 
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Example: Map-Coloring 

 

 

 Variables:  WA, NT, Q, NSW, V, SA, T  

 Domains:  Di = {red,green,blue} 

 Constraints: adjacent regions must have different colors 

• e.g., WA ≠ NT 
—So (WA,NT) must be in {(red,green),(red,blue),(green,red), …}  



 

 
5 

Example: Map-Coloring 

Solutions are complete and consistent assignments,  

• e.g., WA = red, NT = green,Q = red,NSW = green, 

         V = red,SA = blue,T = green 
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Constraint graph 

 Binary CSP: each constraint relates  
two variables 

 

 Constraint graph:  

• nodes are variables 

• arcs are constraints 

 

 CSP benefits 

• Standard representation pattern 

• Generic goal and successor functions 

• Generic heuristics (no domain specific expertise). 

 

 Graph can be used to simplify search. 
—e.g. Tasmania is an independent subproblem. 
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Varieties of CSPs 

 Discrete variables 
• finite domains: 

—n variables, domain size d  O(dn) complete assignments 

—e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete) 

• infinite domains: 

—integers, strings, etc. 

—e.g., job scheduling, variables are start/end days for each job 

—need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3 

 

 Continuous variables 
• e.g., start/end times for Hubble Space Telescope observations 

• linear constraints solvable in polynomial time by linear 
programming 
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Varieties of constraints 

 Unary constraints involve a single variable,  
• e.g., SA ≠ green 

 

 Binary constraints involve pairs of variables, 
• e.g., SA ≠ WA 

 

 Higher-order constraints involve 3 or more variables 
• e.g., cryptarithmetic column constraints 

 

 Preference (soft constraints) e.g. red is better than 
green can be represented by a cost for each variable 
assignment  => Constrained optimization problems. 
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Example: Cryptarithmetic 

 Variables:        
F T U W R O X1 X2 X3 

 Domain: {0,1,2,3,4,5,6,7,8,9} 

 Constraints: Alldiff (F,T,U,W,R,O) 
• O + O = R + 10 · X1 

• X1 + W + W = U + 10 · X2 

• X2 + T + T = O + 10 · X3 

• X3 = F, T ≠ 0, F ≠ 0 
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CSP as a standard search problem 

 A CSP can easily be expressed as a standard 

search problem. 

• Initial State: the empty assignment {}. 

• Operators: Assign value to unassigned variable provided 

that there is no conflict. 

• Goal test: assignment consistent and complete. 

• Path cost: constant cost for every step. 

• Solution is found at depth n, for n variables 

• Hence depth first search can be used 
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Backtracking search 

 Variable assignments are commutative,  
• Eg [ WA = red then NT = green ]  

equivalent to  [ NT = green then WA = red ] 

 

 Only need to consider assignments to a single variable at 
each node 

 b = d and there are dn leaves 

 

 

 Depth-first search for CSPs with single-variable 
assignments is called backtracking search 

 

 Backtracking search basic uninformed algorithm for CSPs 

 

 Can solve n-queens for n ≈ 25 
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Backtracking search 

function BACKTRACKING-SEARCH(csp) % returns a solution or failure 

 return RECURSIVE-BACKTRACKING({} , csp) 

 

function RECURSIVE-BACKTRACKING(assignment, csp) % returns a solution or failure 

 if assignment is complete then return assignment 

 var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 

  if value is consistent with assignment according to CONSTRAINTS[csp] 

 then 

   add {var=value} to assignment  

   result  RECURSIVE-BACKTRACKING(assignment, csp) 

   if result  failure  then return result 

   remove {var=value} from assignment 

 return failure 
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Backtracking example 
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Backtracking example 
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Backtracking example 
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Backtracking example 



 

 
17 

Improving backtracking efficiency 

General-purpose methods can give huge speed gains: 

 

• Which variable should be assigned next? 

• In what order should its values be tried? 

• Can we detect inevitable failure early? 
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Most constrained variable 

 Most constrained variable: 

choose the variable with the fewest legal values 

 

 

 

 

 a.k.a. minimum remaining values (MRV) heuristic 
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Most constraining variable 

 Tie-breaker among most constrained variables 

 Most constraining variable: 

• choose the variable with the most constraints on remaining 

variables 
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Least constraining value 

 Given a variable, choose the least constraining 

value: 

• the one that rules out the fewest values in the remaining 

variables 

 

 

 

 

 

 

 Combining these heuristics makes 1000 queens 

feasible 
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Forward Checking 

 Idea:  

• Keep track of remaining legal values for unassigned 

variables 

• Terminate search when any variable has no legal values 
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Forward checking 
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Forward checking 

 Idea:  
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• Terminate search when any variable has no legal values 
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Forward checking 

 Idea:  

• Keep track of remaining legal values for unassigned 

variables 

• Terminate search when any variable has no legal values 

 

 

 

 

 

 

 No more value for SA: backtrack 
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Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
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X4 
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X2 
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[4-Queens slides copied from B.J. Dorr] 
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Constraint Propagation 

 Simplest form of propagation makes each arc consistent 

 Arc X Y (link in constraint graph) is consistent iff 

  

for every value x of X there is some allowed y 
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Arc consistency 

 Simplest form of propagation makes each arc consistent 

 X Y is consistent iff 

  

for every value x of X there is some allowed y 
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Arc consistency 

 Simplest form of propagation makes each arc consistent 

 X Y is consistent iff 

  

for every value x of X there is some allowed y 

 

 

 

 

 

 If X loses a value, neighbors of X need to be rechecked 
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Arc consistency 

 Simplest form of propagation makes each arc consistent 

 X Y is consistent iff 

  

for every value x of X there is some allowed y 

 

 

 

 

 

 

 

 

 If X loses a value, neighbors of X need to be rechecked 

 Arc consistency detects failure earlier than forward 
checking 

 Can be run as a preprocessor or after each assignment 
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function AC-3(csp) % returns the CSP, possibly with reduced domains 

 inputs: csp, a binary csp with variables {X1, X2, … , Xn}  

 local variables: queue, a queue of arcs initially the arcs in csp 

 while queue is not empty do 

  (Xi, Xj)  REMOVE-FIRST(queue) 

  if REMOVE-INCONSISTENT-VALUES(Xi, Xj)  then 

   for each Xk in NEIGHBORS[Xi ] do 

   add (Xk, Xi) to queue  

 

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) % returns true iff a value is removed 

 removed   false 

 for each x in DOMAIN[Xi] do 

  if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj 

  then delete x from DOMAIN[Xi]; removed   true 

 return removed 

 

 

Arc Consistency Algorithm AC-3 

Time complexity: O(n2d3) 
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Local Search for CSPs 

 Hill-climbing methods typically work with "complete" 
states, i.e., all variables assigned 

 

 To apply to CSPs: 

 

• allow states with unsatisfied constraints 

• operators reassign variable values 

 

 Variable selection: randomly select any conflicted variable 

 

 Value selection by min-conflicts heuristic: 

 

• choose value that violates the fewest constraints 

• i.e., hill-climb with h(n) = number of violated constraints 
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Example: n-queens 

 States: 4 queens in 4 columns (44 = 256 states) 

 Actions: move queen in column 

 Goal test: no attacks 

 Evaluation: h(n) = number of attacks 

 

 

 

 

 

 Given random initial state, we can solve n-queens for large n 

with high probability 
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Real-world CSPs 

 Assignment problems 

• e.g., who teaches what class 

 Timetabling problems 

• e.g., which class is offered when and where? 

 Transportation scheduling 

 Factory scheduling 

 Notice that many real-world problems involve 

real-valued variables 
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Summary 

 CSPs are a special kind of problem: 
 

• states defined by values of a fixed set of variables 

• goal test defined by constraints on variable values 
 

 Backtracking = depth-first search with one variable 
assigned per node 

 

 Variable ordering and value selection heuristics help 
significantly 

 

 Forward checking prevents assignments that guarantee 
later failure 

 

 Constraint propagation (e.g., arc consistency) additionally 
constrains values and detects inconsistencies 

 

 Iterative min-conflicts is usually effective in practice 


