Constraint Satisfaction Problems

A Quick Overview
(based on AIMA book slides)

Constraint satisfaction problems

e What is a CSP?

Finite set of variables V,, V,, ..., V,

Nonempty domain of possible values for each variable
DVl, DVZ, PR DVn

Finite set of constraints C,, C,, ..., C

Each constraint C, limits the values that variables can
take, e.g., V,# V,

e A stateis an assignment of values to some or all
variables.

e Consistent assignment: assignment does not
violate the constraints.

Constraint satisfaction problems

e An assighment is complete when every variable
has a value.

e A solutionto a CSP is acomplete assignment
that satisfies all constraints.

e Some CSPs require a solution that maximizes an
objective function.

e Applications:
« Scheduling the Hubble Space Telescope,
« Floor planning for VLSI,
« Map coloring,
* Cryptography

Example: Map-Coloring

Northern
Territory
Westarn Quesnsland
Australia
South —
Australia
New South Wales
;ﬂ\mﬂ
Tasmania

e Variables: WA, NT, Q, NSW,V, SA, T
e Domains: D, ={red,green,blue}
e Constraints: adjacent regions must have different colors
 e.g., WA#NT
—30 (WA,NT) must be in {(red,green),(red,blue),(green,red), ...}

4

Example: Map-Coloring

=
2N

Tasm"a

Solutions are complete and consistent assignments,

* e.g., WA =red, NT = green,Q =red,NSW = green,
V =red,SA = blue, T = green

Constraint graph

e Binary CSP: each constraint relates
two variables

e Constraint graph: a
 nodes are variables @

e arcs are constraints

e CSP benefits °
« Standard representation pattern
» Generic goal and successor functions @
« Generic heuristics (no domain specific expertise).

e Graph can be used to simplify search.
—e.g. Tasmania is an independent subproblem.

Varieties of CSPs

e Discrete variables

« finite domains:
—n variables, domain size d - O(d") complete assignments
—e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)
* Infinite domains:
—integers, strings, etc.
—e.g., job scheduling, variables are start/end days for each job
—need a constraint language, e.g., StartJob; + 5 < StartJob,

e Continuous variables
* e.g., start/end times for Hubble Space Telescope observations

 linear constraints solvable in polynomial time by linear
programming

Varieties of constraints

e Unary constraints involve a single variable,
* e.g., SA #green

e Binary constraints involve pairs of variables,
+ e.g., SA#WA

e Higher-order constraints involve 3 or more variables
e e.g., cryptarithmetic column constraints

e Preference (soft constraints) e.g. red is better than
green can be represented by a cost for each variable
assignment => Constrained optimization problems.

Example: Cryptarithmetic

ol4 -
ClE =
DS O

+
F

Variables: Hv_\d

FTUWRO X; X, X,
e Domain: {0,1,2,3,4,5,6,7,8,9}
e Constraints: Alldiff (F,T,U,W,R,0)
« O+0=R+10- X,
« X, +W+W=U+10- X,
« X, +T+T=0+10" X,
« X;3=F, T#0,F#0

CSP as a standard search problem

e A CSP can easily be expressed as a standard
search problem.

Initial State: the empty assignment {}.

Operators: Assign value to unassigned variable provided
that there is no conflict.

Goal test: assignment consistent and complete.
Path cost: constant cost for every step.

Solution is found at depth n, for n variables
Hence depth first search can be used

10

Backtracking search

e Variable assignments are commutative,

« Eg[WA =red then NT = green |
equivalentto [NT = green then WA = red |

e Only need to consider assignments to a single variable at

each node
> b = d and there are d" leaves

e Depth-first search for CSPs with single-variable
assignments is called backtracking search

e Backtracking search basic uninformed algorithm for CSPs

e Can solve n-queens forn= 25

11

Backtracking search

function BACKTRACKING-SEARCH(csp) % returns a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) % returns a solution or failure
if assignment is complete then return assignment
var <« SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp]
then

add {var=value} to assignment
result « RECURSIVE-BACKTRACKING(assignment, csp)
if result =failure then return result

remove {var=value} from assignment
return failure

12

Backtracking example

S5

13

Backtracking example

14

Backtracking example

R

’/—"I\

¢ ¢ ¢
. &

15

Backtracking example

R

— T
Sl SSl S

—

.
— T~

s o

16

Improving backtracking efficiency

General-purpose methods can give huge speed gains:
« Which variable should be assigned next?

* In what order should its values be tried?
« Can we detect inevitable failure early?

17

Most constrained variable

e Most constrained variable:
choose the variable with the fewest legal values

e a.k.a. minimum remaining values (MRV) heuristic

18

Most constraining variable

e Tie-breaker among most constrained variables

e Most constraining variable:

* choose the variable with the most constraints on remaining
variables

R R R

19

Least constraining value

e Given avariable, choose the least constraining
value:

 the one that rules out the fewest values in the remaining
variables

Allows 1 value for SA

A -

e Combining these heuristics makes 1000 queens
feasible

20

Forward Checking

e |dea:

« Keep track of remaining legal values for unassigned
variables

« Terminate search when any variable has no legal values

D

WA NT Q NSW v SA T

21

Forward checking

e |dea:

« Keep track of remaining legal values for unassigned
variables

« Terminate search when any variable has no legal values

SSEA S5

WA

NT

Q

NSW

22

Forward checking

ldea:

« Keep track of remaining legal values for unassigned

variables

« Terminate search when any variable has no legal values

SSEN SSEa o~

WA NT Q NSW v SA T
ENEENEENEENE|ENE|ENEENE
I PTEHEFEENE|IETYE P E|ENE
] Hiw|iE EjErE I

23

Forward checking

e |dea:

« Keep track of remaining legal values for unassigned
variables

« Terminate search when any variable has no legal values

S S Ea S S~

WA NT Q NSW v SA T
ENEENEENEENE|ENE|ENEENE
] EEFEENEETE 1L N
] N N _ENTEm I
] L ol I ENE

e No more value for SA: backtrack

24

Example: 4-Queens Problem

1

2 3 4 {1121314}

X1

X2

{1,2,3,4}

X3

{1I2I314}

X4

{1,2,3,4}

[4-Queens slides copied from B.J. Dorr]

25

Example: 4-Queens Problem

X1 X2
{1121314} {1121314}
X3 X4

{1,2,3,4} {1,2,3,4}

26

Example: 4-Queens Problem

X1

{1121314}

X2

{, 3,4}

X3

{ lzl 14}

X4

{ IZIBI }

27

Example: 4-Queens Problem

X1

{1121314}

X2

{, 3,4}

X3

{ lzl 14}

X4

{ 12I31 }

28

Example: 4-Queens Problem

X1

{1121314}

X2

{, 3,4}

X3

{ r 1 17 }

{ I2I 7/ }

29

Example: 4-Queens Problem

X1

{1121314}

X2

L, 4

X3

{ lzl 14}

X4

30

{ 12I31 }

Example: 4-Queens Problem

X1

{1121314}

X2

L, 4

31

{ I/ I3I }

Example: 4-Queens Problem

X1

{1121314}

X2

L, 4

32

{ I/ I3I }

Example: 4-Queens Problem

X1

{1121314}

X2

L, 4

X4

33

{ r 1 17 }

Example: 4-Queens Problem

X1 X2
1 2 3 4 { 121314} {1121314}
X3 X4

{1,2,3,4} {1,2,3,4}

34

Example: 4-Queens Problem

1

2 3 4

{ I213I4}

X1

X2
{ I 7 I4}

{11 I3I }

X3

35

X4
{11 1314}

Example: 4-Queens Problem

X1

{ I213I4}

X2
{ I 7 I4}

X3

{11 I3I }

36

X4
{11 1314}

Example: 4-Queens Problem

X1

{ I213I4}

X2
{ I 7 I4}

X3

{1I I 7 }

37

X4
{11 13I }

Example: 4-Queens Problem

X1

{ I213I4}

X2
{ I 7 I4}

X3

{1I I 7 }

38

X4
{11 13I }

Example: 4-Queens Problem

X1

{ I213I4}

X2
{ I 7 I4}

X3

{1I I 7 }

39

{ /4 I3I }

Example: 4-Queens Problem

X1

{ I213I4}

X2
{ I 7 I4}

X3

{1I I 7 }

40

{ /4 I3I }

Constraint Propagation

e Simplest form of propagation makes each arc consistent
e Arc X =Y (link in constraint graph) is consistent iff

for every value x of X there is some allowed y

SSEN SSEa o~

WA Q NSW v SA T
| H 1N EET N HETH

~¢—

41

Arc consistency

e Simplest form of propagation makes each arc consistent
e X =Y is consistent iff

for every value x of X there is some allowed y

SSEN SSEa o~

WA Q NSW v SA T
| H I 1 HETH

~

42

Arc consistency

e Simplest form of propagation makes each arc consistent
e X =Y is consistent iff

for every value x of X there is some allowed y

SSEN SSEa o~

WA Q NSW v SA T
] O m i m EEEEm

~—

e |f Xloses avalue, neighbors of X need to be rechecked

43

Arc consistency

Simplest form of propagation makes each arc consistent
e X =Y is consistent iff

for every value x of X there is some allowed y

SSEA SSEa o~

WA NT Q NSW v SA T
1 0 m xpxhm] Wmim
<

e |f Xloses avalue, neighbors of X need to be rechecked

e Arc consistency detects failure earlier than forward
checking

e Can berun as apreprocessor or after each assignment

44

Arc Consistency Algorithm AC-3

function AC-3(csp) % returns the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables {X;, X,, ... , X}
local variables: queue, a queue of arcs initially the arcs in csp
while queue is not empty do
(Xi, X;) <~ REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X, in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) % returns true iff a value is removed
removed « false
for each x in DOMAIN[X;] do
if no value y in DOMAIN[X;] allows (x,y) to satisfy the constraints between X; and X
then delete x from DOMAIN[X]; removed « true
return removed

Time complexity: O(n4d3)

45

Local Search for CSPs

e Hill-climbing methods typically work with "complete"
states, I.e., all variables assigned

e To apply to CSPs:

 allow states with unsatisfied constraints
« operators reassign variable values

e Variable selection: randomly select any conflicted variable

e Value selection by min-conflicts heuristic:

 choose value that violates the fewest constraints
* i.e., hill-climb with h(n) = number of violated constraints

46

Example: n-queens

e States: 4 queens in 4 columns (4% = 256 states)
e Actions: move queen in column

e Goal test: no attacks

e Evaluation: h(n) = number of attacks

A [(Wm
A e
N EH

|
R
H B

¥y
n B

h=5 h=2

e Given random initial state, we can solve n-queens for large n
with high probability

47

Real-world CSPs

e Assignment problems
* e.g., who teaches what class

e Timetabling problems
* e.g., which class is offered when and where?

e Transportation scheduling
e Factory scheduling

e Notice that many real-world problems involve
real-valued variables

48

Summary

CSPs are a special kind of problem:

» states defined by values of a fixed set of variables
» goal test defined by constraints on variable values

Backtracking = depth-first search with one variable
assigned per node

Variable ordering and value selection heuristics help
significantly

Forward checking prevents assignments that guarantee
later failure

Constraint propagation (e.g., arc consistency) additionally
constrains values and detects inconsistencies

Iterative min-conflicts is usually effective in practice

49

