

1

Constraint Satisfaction Problems

 A Quick Overview

 (based on AIMA book slides)

2

Constraint satisfaction problems

 What is a CSP?

• Finite set of variables V1, V2, …, Vn

• Nonempty domain of possible values for each variable

DV1, DV2, … DVn

• Finite set of constraints C1, C2, …, Cm

• Each constraint Ci limits the values that variables can

take, e.g., V1 ≠ V2

 A state is an assignment of values to some or all

variables.

 Consistent assignment: assignment does not

violate the constraints.

3

Constraint satisfaction problems

 An assignment is complete when every variable

has a value.

 A solution to a CSP is a complete assignment

that satisfies all constraints.

 Some CSPs require a solution that maximizes an

objective function.

 Applications:

• Scheduling the Hubble Space Telescope,

• Floor planning for VLSI,

• Map coloring,

• Cryptography

4

Example: Map-Coloring

 Variables: WA, NT, Q, NSW, V, SA, T

 Domains: Di = {red,green,blue}

 Constraints: adjacent regions must have different colors

• e.g., WA ≠ NT
—So (WA,NT) must be in {(red,green),(red,blue),(green,red), …}

5

Example: Map-Coloring

Solutions are complete and consistent assignments,

• e.g., WA = red, NT = green,Q = red,NSW = green,

 V = red,SA = blue,T = green

6

Constraint graph

 Binary CSP: each constraint relates
two variables

 Constraint graph:

• nodes are variables

• arcs are constraints

 CSP benefits

• Standard representation pattern

• Generic goal and successor functions

• Generic heuristics (no domain specific expertise).

 Graph can be used to simplify search.
—e.g. Tasmania is an independent subproblem.

7

Varieties of CSPs

 Discrete variables
• finite domains:

—n variables, domain size d O(dn) complete assignments

—e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)

• infinite domains:

—integers, strings, etc.

—e.g., job scheduling, variables are start/end days for each job

—need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

 Continuous variables
• e.g., start/end times for Hubble Space Telescope observations

• linear constraints solvable in polynomial time by linear
programming

8

Varieties of constraints

 Unary constraints involve a single variable,
• e.g., SA ≠ green

 Binary constraints involve pairs of variables,
• e.g., SA ≠ WA

 Higher-order constraints involve 3 or more variables
• e.g., cryptarithmetic column constraints

 Preference (soft constraints) e.g. red is better than
green can be represented by a cost for each variable
assignment => Constrained optimization problems.

9

Example: Cryptarithmetic

 Variables:
F T U W R O X1 X2 X3

 Domain: {0,1,2,3,4,5,6,7,8,9}

 Constraints: Alldiff (F,T,U,W,R,O)
• O + O = R + 10 · X1

• X1 + W + W = U + 10 · X2

• X2 + T + T = O + 10 · X3

• X3 = F, T ≠ 0, F ≠ 0

10

CSP as a standard search problem

 A CSP can easily be expressed as a standard

search problem.

• Initial State: the empty assignment {}.

• Operators: Assign value to unassigned variable provided

that there is no conflict.

• Goal test: assignment consistent and complete.

• Path cost: constant cost for every step.

• Solution is found at depth n, for n variables

• Hence depth first search can be used

11

Backtracking search

 Variable assignments are commutative,
• Eg [WA = red then NT = green]

equivalent to [NT = green then WA = red]

 Only need to consider assignments to a single variable at
each node

 b = d and there are dn leaves

 Depth-first search for CSPs with single-variable
assignments is called backtracking search

 Backtracking search basic uninformed algorithm for CSPs

 Can solve n-queens for n ≈ 25

12

Backtracking search

function BACKTRACKING-SEARCH(csp) % returns a solution or failure

 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) % returns a solution or failure

 if assignment is complete then return assignment

 var SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

 if value is consistent with assignment according to CONSTRAINTS[csp]

 then

 add {var=value} to assignment

 result RECURSIVE-BACKTRACKING(assignment, csp)

 if result failure then return result

 remove {var=value} from assignment

 return failure

13

Backtracking example

14

Backtracking example

15

Backtracking example

16

Backtracking example

17

Improving backtracking efficiency

General-purpose methods can give huge speed gains:

• Which variable should be assigned next?

• In what order should its values be tried?

• Can we detect inevitable failure early?

18

Most constrained variable

 Most constrained variable:

choose the variable with the fewest legal values

 a.k.a. minimum remaining values (MRV) heuristic

19

Most constraining variable

 Tie-breaker among most constrained variables

 Most constraining variable:

• choose the variable with the most constraints on remaining

variables

20

Least constraining value

 Given a variable, choose the least constraining

value:

• the one that rules out the fewest values in the remaining

variables

 Combining these heuristics makes 1000 queens

feasible

21

Forward Checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

22

Forward checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

23

Forward checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

24

Forward checking

 Idea:

• Keep track of remaining legal values for unassigned

variables

• Terminate search when any variable has no legal values

 No more value for SA: backtrack

25

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

[4-Queens slides copied from B.J. Dorr]

26

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

27

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

28

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

29

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2, , }

X2
{ , ,3,4}

30

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

31

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

32

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

33

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , , ,4}

34

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

35

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

36

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

37

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

38

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

39

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

40

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

41

Constraint Propagation

 Simplest form of propagation makes each arc consistent

 Arc X Y (link in constraint graph) is consistent iff

for every value x of X there is some allowed y

42

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

43

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be rechecked

44

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be rechecked

 Arc consistency detects failure earlier than forward
checking

 Can be run as a preprocessor or after each assignment

45

function AC-3(csp) % returns the CSP, possibly with reduced domains

 inputs: csp, a binary csp with variables {X1, X2, … , Xn}

 local variables: queue, a queue of arcs initially the arcs in csp

 while queue is not empty do

 (Xi, Xj) REMOVE-FIRST(queue)

 if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

 for each Xk in NEIGHBORS[Xi] do

 add (Xk, Xi) to queue

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) % returns true iff a value is removed

 removed false

 for each x in DOMAIN[Xi] do

 if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints between Xi and Xj

 then delete x from DOMAIN[Xi]; removed true

 return removed

Arc Consistency Algorithm AC-3

Time complexity: O(n2d3)

46

Local Search for CSPs

 Hill-climbing methods typically work with "complete"
states, i.e., all variables assigned

 To apply to CSPs:

• allow states with unsatisfied constraints

• operators reassign variable values

 Variable selection: randomly select any conflicted variable

 Value selection by min-conflicts heuristic:

• choose value that violates the fewest constraints

• i.e., hill-climb with h(n) = number of violated constraints

47

Example: n-queens

 States: 4 queens in 4 columns (44 = 256 states)

 Actions: move queen in column

 Goal test: no attacks

 Evaluation: h(n) = number of attacks

 Given random initial state, we can solve n-queens for large n

with high probability

48

Real-world CSPs

 Assignment problems

• e.g., who teaches what class

 Timetabling problems

• e.g., which class is offered when and where?

 Transportation scheduling

 Factory scheduling

 Notice that many real-world problems involve

real-valued variables

49

Summary

 CSPs are a special kind of problem:

• states defined by values of a fixed set of variables

• goal test defined by constraints on variable values

 Backtracking = depth-first search with one variable
assigned per node

 Variable ordering and value selection heuristics help
significantly

 Forward checking prevents assignments that guarantee
later failure

 Constraint propagation (e.g., arc consistency) additionally
constrains values and detects inconsistencies

 Iterative min-conflicts is usually effective in practice

