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Non-validity: Example

Proposition. 3⊤ is not K-valid.

Proof. A counterexample is the following interpretation:

I = 〈{w}, ∅, {w 7−→ (a 7−→ T )}〉.

Apparently, we have I, w 6|= 3⊤, because there is no world u such that wRu.

Proposition 2ϕ→ ϕ is not K-valid.

Proof. A counterexample is the following interpretation:

I = 〈{w}, ∅, {w 7−→ (a 7−→ F )}〉.

Apparently, we have I, w |= 2a, but I, w 6|= a.
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Non-validity: Another Example

Proposition. 2ϕ→ 22ϕ is not K-valid.

Proof. A counterexample is the following interpretation:

I = 〈{u, v, w}, {(u, v), (v, w)}, π〉,

with

π(u) = {a 7−→ T}

π(v) = {a 7−→ T}

π(w) = {a 7−→ F}

This means I, u |= 2a, but I, u 6|= 22a.

3



Accessibility and Axiom Schemata

Let us consider the following axiom schemata:

T: 2ϕ→ ϕ (knowledge axiom)

4: 2ϕ→ 22ϕ (positive introspection)

5: 3ϕ→ 23ϕ (negative introspection: equivalently ¬2ϕ→ 2¬2ϕ)

B: ϕ→ 23ϕ

D: 2ϕ→ 3ϕ (disbelief in the negation, equivalently 2ϕ→ ¬2¬ϕ)

. . . and the following classes of frames, for which the accessibility relation
is restricted as follows:
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T: reflexive (wRw for each world w),

4: transitive (wRu and uRv implies wRv),

5: euclidian (wRu and wRv implies uRv),

B: symmetric (wRu implies uRw),

D: serial (for each w there exists v with wRv)
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Connection between Accessibility Relations and Axiom
Schemata (1)

Theorem. Axiom schema T (4, 5, B,D) is T- valid (4-, 5-, B-, or D-valid,
respectively).

Proof for T and T. Let F be a frame from class T. Let I be an interpretation based
on F and let w be an arbitrary world in I. If 2ϕ is not true in a world w, then axiom T is
true in w. If 2ϕ is true in w, then ϕ is true in all accessible worlds. Since the accessibility
relation is reflexive, w is among the accessible worlds, i.e., ϕ is true in w. This means that
also in this case T is true w. This means, T is true in all worlds in all interpretations based
on T-frames, which we wanted to show.
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Connection between Accessibility Relations and Axiom
Schemata (2)

Theorem. If T (4, 5, B,D) is valid in a frame F , then F is a T-Frame (4-,
5-, B-, or D-frame, respectively).

Proof for T and T. Assume that F is not a T-frame. We will construct an interpretation
based on F that falsifies T .

Because F is not a T-frame, there is a world w such that not wRw.

Construct an interpretation I such that w 6|= p and v |= p for all v such that wRv.

Now w |= 2p and w 6|= p, and hence w 6|= 2p → p.
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Different Modal Logics

Name Property Axiom schema
K − 2(ϕ → ψ) → (2ϕ → 2ψ)

T reflexivity 2ϕ → ϕ

4 transitivity 2ϕ → 22ϕ

5 euclidicity 3ϕ → 23ϕ

B symmetry ϕ → 23ϕ

D seriality 2ϕ → 3ϕ

Some basic modal logics:

K

KT4 = S4

KT5 = S5
...
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Different Modal Logics

logics 2 3 = ¬2¬ K T 4 5 B D
aletic necessarily possibly Y Y ? ? ? Y
epistemic known possible Y Y Y Y N Y
doxastic believed possible Y N Y Y N Y
deontic obligatory permitted Y N N ? ? Y
temporal always (in future) sometimes Y Y Y N N Y
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Proof Methods

• How can we show that a formula is C-valid?

• In order to show that a formula is not C-valid, one can construct a
counterexample (= an interpretation that falsifies it.)

• When trying out all ways of generating a counterexample without
success , this counts as a proof of validity.

; method of (analytic/semantic) tableaux
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Tableau Method

A tableau is a tree with nodes marked as follows:

•w |= ϕ,

•w 6|= ϕ , and

•wRv.

A branch that contains nodes marked with w |= ϕ and w 6|= ϕ is closed.
All other branches are open. If all branches are closed, the tableau is closed.

A tableau is constructed by using the tableau rules.
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Tableau Rules for the Propositional Logic

w |= ϕ ∨ ψ
w |= ϕ w |= ψ

w 6|= ϕ ∨ ψ
w 6|= ϕ

w 6|= ψ

w |= ¬ϕ
w 6|= ϕ

w |= ϕ ∧ ψ
w |= ϕ

w |= ψ

w 6|= ϕ ∧ ψ
w 6|= ϕ w 6|= ψ

w 6|= ¬ϕ
w |= ϕ

w |= ϕ→ ψ

w 6|= ϕ w |= ψ

w 6|= ϕ→ ψ

w |= ϕ

w 6|= ψ
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Additional Tableau Rules for the Modal Logic K

w |= 2ϕ

v |= ϕ

if wRv is on the
branch already

w 6|= 2ϕ

wRv

v 6|= ϕ
for new v

w |= 3ϕ

wRv

v |= ϕ
for new v

w 6|= 3ϕ

v 6|= ϕ

if wRv is on the
branch already
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Properties of K Tableaux

Proposition. If aK-tableau is closed, the truth condition at the root cannot
be satisfied.

Theorem (Soundness). If a K-tableau with root w 6|= ϕ is closed, then ϕ
is K-valid.

Theorem (Completeness). If ϕ is K-valid, then there is a closed tableau
with root w 6|= ϕ.

Proposition (Termination). There are strategies for constructing K-
tableaux that always terminate after a finite number of steps, and result in
a closed tableau whenever one exists.
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Tableau Rules for Other Modal Logics

For restricted classes of frames there are more tableau rules.

; For reflexive (T) frames we may extend any branch with wRw.

; For transitive (4) frames we need one additional rule :
◦ If there are wRv and vRu on one branch, we can extend this branch

by wRu.

; For serial (D) frames we need the following rule:
◦ If there is w |= . . . or w 6|= . . . on a branch, then add wRv for a new

world v.

• Similar rules for other properties...
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Testing Logical Consequence with Tableaux

• Let Θ be a set of formulas. When does a formula ϕ follow from Θ:
Θ |=X ϕ?

→ I.e., test whether in all interpretations on X-frames in which Θ is true,
also ϕ is true.

• Wouldn’t there be a deduction theorem we could use?

→ Example: a |=K 2a holds, but a→ 2a is not K-valid.

; There is no deduction theorem as in the propositional logic, and logical
consequence cannot be directly reduced to validity!
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Tableaus and Logical Implication

For testing logical consequence, we can use the following tableau rule:

• If w is a world on a branch and ψ ∈ Θ, then we can add w |= ψ to our
branch.

; Soundness is obvious

; Completeness is non-trivial
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Embedding Modal Logics in the Predicate Logic (1)

1. τ(p, x) = p(x) for propositional variables p

2. τ(¬φ, x) = ¬τ(φ, x)

3. τ(φ ∨ ψ, x) = τ(φ, x) ∨ τ(ψ, x)

4. τ(φ ∧ ψ, x) = τ(φ, x) ∧ τ(ψ, x)

5. τ(2φ, x) = ∀y(R(x, y) → τ(φ, y)) for some new y

6. τ(3φ, x) = ∃y(R(x, y) ∧ τ(φ, y)) for some new y
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Embedding Modal Logics in the Predicate Logic (2)

Theorem. φ is K-valid if and only if ∀xτ(φ, x) is valid in the predicate logic.

Theorem. φ is T-valid if and only if in the predicate logic the logical
consequence {∀xR(x, x)} |= ∀xτ(φ, x) holds.

Example.
((2p) ∧ 3(p→ q)) → 3q

is K-valid because

∀x((∀x′(R(x, x′) → p(x′))) ∧ ∃x′(R(x, x′) ∧ (p(x′) → q(x′))))
→ ∃x′(R(x, x′) ∧ q(x′))

is valid in the predicate logic.
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Outlook

We only looked at some basic propositional modal logics. There are also

• modal first order logics (with quantification ∀ and ∃, and predicates)

• multi-modal logics: more than one modality, e.g. knowledge/belief
operators for several agents

• temporal and dynamic logics (modalities that refer to time or programs,
respectively)
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