Principles of Knowledge Representation and Reasoning

3. Modal Logics

3.1 Boxes and Diamonds

Bernhard Nebel

- Motivation
- Syntax
- Semantics: Possible Worlds
- Different Systems of Modal Logics
- Proof Methods
- Outlook

Motivation for Studying Modal Logics

- Some KR formalisms can be understood as (fragments of) a propositional modal logic
- Complexity and decidability results can be re-used
- Algorithms/proof methods can be re-used
- \rightsquigarrow Motivation for introducing modal logic as an independent topic
- \rightarrow Will be used for the qualitative spatial representation formalism RCC8
- \rightarrow Another application will be **description logics**

Motivation for Modal Logics

Often, we want to state something where we have an "embedded proposition":

- John believes that theory is nonsense
- I know that $2^{10} = 1024$

Reasoning with embedded propositions:

- John believes that theory is nonsense
- John believes that if theory is nonsense then theory is dispensable
- \rightarrow This implies (assuming *belief* is closed under *modus ponens*):
 - \rightsquigarrow John believes that theory is dispensable
- \rightsquigarrow How to formalize this?

Propositional logic + two new unary operators: \Box , \diamond (**Box & Diamond**):

 \Box and \diamondsuit have the same operator precedence as \neg . Some possible readings of $\Box \varphi$:

- Necessarily φ (alethic)
- Always φ (temporal)
- Make φ true! (deontic)
- Agent A believes φ (doxastic)
- Agent A knows φ (epistemic)
- \rightsquigarrow different formalizations for different intended readings

Truth Functional Semantics?

- Could it be possible to define the meaning of □φ truth functionally, i.e. by referring to the truth value of φ only?
- Trial for the *necessity* interpretation:

• If φ is false, then $\Box \varphi$ should be false.

 $\circ~$ If φ is true, then \ldots

 \rightsquigarrow ... $\Box \varphi$ should be true \rightsquigarrow \Box is the identity function

- $\rightarrow \dots \Box \varphi$ should be false $\rightarrow \Box \varphi$ is identical to falsity
- Note: There are only 4 different unary Boolean functions.

Semantics: The Idea

In classical propositional logic, formulae are interpreted over single interpretations and are evaluated to *true* or *false*.

In modal logics one considers always **sets** of such interpretations: **possible worlds** (physically possible, conceivable, ...)

Main idea:

- Consider a world (interpretation) w and a set of worlds W, which are possible with respect to w
- A classical formula (with no modal operators) φ is true relative to (w, W) iff φ is true in w
- $\Box \varphi$ is true relative to (w, W) iff φ is true in **all worlds** in W
- $\Diamond \varphi$ is true relative to (w, W) iff φ is true in one world in W

Semantics: An Example

Examples:

- $a \wedge \neg b$ is true relative to (w, W).
- $\Box a$ is not true relative to (w, W).
- $\Box(a \lor b)$ is true relative to (w, W).

Question: How shall we evaluate modal formulae in $w \in W$? \rightsquigarrow for each world, we specify the possible worlds

 \rightsquigarrow frames

Frames, Interpretations, and Worlds

A frame is a pair $\mathcal{F} = \langle W, R \rangle$, where W is a non-empty set (of *worlds*) and $R \subseteq W \times W$ (the *accessibility relation*).

For $(w, v) \in R$ we write also wRv. We say that v is an *R*-successor of w and that v is reachable (or *R*-reachable) from w.

A (Σ)-interpretation (or model) based on the frame $\mathcal{F} = \langle W, R \rangle$ is a triple $\mathcal{I} = \langle W, R, \pi \rangle$, where π is a function from worlds to truth assignments:

$$\pi: W \to (\Sigma \to \{T, F\})$$

A formula φ is true in world w of an interpretation $\mathcal{I} = \langle W, R, \pi \rangle$ under the following conditions:

$$\begin{split} \mathcal{I}, w &\models a \quad \text{iff} \quad \pi(w)(a) = T \\ \mathcal{I}, w &\models \top \\ \mathcal{I}, w &\models \top \\ \mathcal{I}, w &\models \downarrow \\ \mathcal{I}, w &\models \neg \varphi \quad \text{iff} \quad \mathcal{I}, w &\models \varphi \\ \mathcal{I}, w &\models \varphi \land \psi \quad \text{iff} \quad \mathcal{I}, w &\models \varphi \text{ and } \mathcal{I}, w &\models \psi \\ \mathcal{I}, w &\models \varphi \lor \psi \quad \text{iff} \quad \mathcal{I}, w &\models \varphi \text{ or } \mathcal{I}, w &\models \psi \\ \mathcal{I}, w &\models \varphi \lor \psi \quad \text{iff} \quad \text{iff} \quad \mathcal{I}, w &\models \varphi, \text{ then } \mathcal{I}, w &\models \psi \\ \mathcal{I}, w &\models \varphi \leftrightarrow \psi \quad \text{iff} \quad \mathcal{I}, w &\models \varphi, \text{ if and only if } \mathcal{I}, w &\models \psi \\ \mathcal{I}, w &\models \Box \varphi \quad \text{iff} \quad \mathcal{I}, u &\models \varphi \text{ for all } u \text{ s.t. } wRu \\ \mathcal{I}, w &\models \Diamond \varphi \quad \text{iff} \quad \mathcal{I}, u &\models \varphi \text{ for one } u \text{ s.t. } wRu \end{split}$$

A formula φ is called **satisfiable in an interpretation** \mathcal{I} (or in a frame \mathcal{F} , or in a class of frames \mathcal{C}) if there exists a world in \mathcal{I} (or an interpretation \mathcal{I} based on \mathcal{F} , or an interpretation \mathcal{I} based on a frame contained in the class \mathcal{C} , respectively) such that $\mathcal{I}, w \models \varphi$.

A formula φ is called **true in an interpretation** \mathcal{I} (symbolically $\mathcal{I} \models \varphi$) if φ is true in all worlds of \mathcal{I} .

A formula φ is called **valid in a frame** \mathcal{F} or \mathcal{F} -valid (symbolically $\mathcal{F} \models \varphi$) if φ is true in all interpretations based on \mathcal{F} .

A formula φ is called **valid in a class of frames** C or C-valid (symbolically $C \models \varphi$) if $\mathcal{F} \models \varphi$ for all $\mathcal{F} \in C$.

K is the class of all frames – named after Kripke, who invented this semantics.

Validity: Some Examples

- $\varphi \lor \neg \varphi;$ $\Box(\varphi \lor \neg \varphi);$
- $\Box \varphi$, if φ is a classical tautology;
- $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$ (called axiom schema K).

Theorem. *K* is **K**-valid.

Proof. Let \mathcal{I} be an interpretation and let w be a world in \mathcal{I} .

Assumption: $\mathcal{I}, w \models \Box(\varphi \rightarrow \psi)$, i.e., in all worlds u with wRu, we have that if φ is true, then ψ must be true(otherwise K is true in any case).

If $\Box \varphi$ is false in w, then $(\Box \varphi \rightarrow \Box \psi)$ is true.

If $\Box \varphi$ is true in w, then φ is true in all worlds u. Because of our assumption, $\Box \psi$ is true in w, i.e., $(\Box \varphi \rightarrow \Box \psi)$ is true in w.

Since \mathcal{I} and w were arbitrary, the argument goes through for any \mathcal{I}, w , i.e., K is K-valid.