A Brief Introduction to Nonmonotonic Reasoning

Gerhard Brewka, Stefan Woltran

Computer Science Institute University of Leipzig [brewka,woltran]@informatik.uni-leipzig.de

G. Brewka, S. Woltran (Leipzig)

WS 2013 1 / 40

Outline

Lecture I: Background and Simple Forms of Nonmon

- 1 Background and Motivation
- 2 Closed World Assumption

3 Argumentation Frameworks $\sqrt{}$

Lecture II: The Big Three and ASP

- 4 Preferences Among Formulas: Poole and Beyond
- 5 Preferences Among Models: Circumscription
- 6 Nonstandard Inference Rules: Default Logic
- Answer Set Programming

< 🗇 🕨 < 🖻 🕨

Outline

Lecture I: Background and Simple Forms of Nonmon

- 1 Background and Motivation
- 2 Closed World Assumption
- 3 Argumentation Frameworks $\sqrt{}$

Lecture II: The Big Three and ASP

- Preferences Among Formulas: Poole and Beyond
- 5 Preferences Among Models: Circumscription
- 6 Nonstandard Inference Rules: Default Logic
- Answer Set Programming

Background and Simple Forms of Nonmon

G. Brewka, S. Woltran (Leipzig)

Nonmonotonic Reasoning

WS 2013/14 3 / 40

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Classical logic allows us to represent universal statements:

 $\forall x. PhDstudent(x) \rightarrow Student(x)$

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

 $\forall x. PhDstudent(x) \rightarrow Student(x)$

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

 $\forall x. PhDstudent(x) \rightarrow Student(x)$

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

```
\forall x. PhDstudent(x) \rightarrow Student(x)
```

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

```
\forall x. PhDstudent(x) \rightarrow Student(x)
```

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

```
\forall x. PhDstudent(x) \rightarrow Student(x)
```

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

```
\forall x. PhDstudent(x) \rightarrow Student(x)
```

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

```
\forall x. PhDstudent(x) \rightarrow Student(x)
```

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

 $\forall x. PhDstudent(x) \rightarrow Student(x)$

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

 $\forall x. PhDstudent(x) \rightarrow Student(x)$

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

Classical logic allows us to represent universal statements:

 $\forall x. PhDstudent(x) \rightarrow Student(x)$

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.

• ...

イロト イヨト イヨト イヨ

Classical logic allows us to represent universal statements:

 $\forall x. PhDstudent(x) \rightarrow Student(x)$

- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor's waiting room patients get angry ... unless they are close to finishing a proof.
 - ...

• • • • • • • • • • • •

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x.Bird(x) \rightarrow Flies(x)$ we use

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$$

and add

 $\forall x.Ab(x) \leftrightarrow Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \dots$

- Problem 1: no exhaustive list of abnormalities.
- Problem 2: does not give us *Flies(tweety)* unless *tweety* is known not to be an exception.

A (1) > A (2) > A

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x.Bird(x) \rightarrow Flies(x)$ we use

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$$

and add

 $\forall x.Ab(x) \leftrightarrow Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \dots$

- Problem 1: no exhaustive list of abnormalities.
- Problem 2: does not give us *Flies*(*tweety*) unless *tweety* is known not to be an exception.

A (10) > A (10) > A

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x.Bird(x) \rightarrow Flies(x)$ we use

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$$

and add

$$\forall x.Ab(x) \leftrightarrow Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \dots$$

- Problem 1: no exhaustive list of abnormalities.
- Problem 2: does not give us *Flies(tweety)* unless *tweety* is known not to be an exception.

< 🗇 🕨 < 🖃 🕨

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x.Bird(x) \rightarrow Flies(x)$ we use

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$$

and add

$$\forall x.Ab(x) \leftrightarrow Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \dots$$

• Problem 1: no exhaustive list of abnormalities.

• Problem 2: does not give us *Flies(tweety)* unless *tweety* is known not to be an exception.

< 🗇 🕨 < 🖃 🕨

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x.Bird(x) \rightarrow Flies(x)$ we use

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$$

and add

$$\forall x.Ab(x) \leftrightarrow Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \dots$$

- Problem 1: no exhaustive list of abnormalities.
- Problem 2: does not give us *Flies(tweety)* unless *tweety* is known not to be an exception.

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.
- If additional information tells us something is abnormal, retract former conclusion.

 \Rightarrow Conclusions do not grow monotonically with premises.

• Classical logic cannot model this, as it is monotonic:

$$X \subseteq Y \Rightarrow Th(X) \subseteq Th(Y).$$

- Why? *q* follows from *X* if *q* holds in all models of *X*. Models of *Y* a subset, thus *q* holds in all of them as well.
- Observation led to the AI field of nonmonotonic reasoning, active for over 30 years.

• I > • E > •

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.
- If additional information tells us something is abnormal, retract former conclusion.
 - \Rightarrow Conclusions do not grow monotonically with premises.
- Classical logic cannot model this, as it is monotonic:

$$X \subseteq Y \Rightarrow Th(X) \subseteq Th(Y).$$

- Why? *q* follows from *X* if *q* holds in all models of *X*. Models of *Y* a subset, thus *q* holds in all of them as well.
- Observation led to the AI field of nonmonotonic reasoning, active for over 30 years.

• I > • E > •

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.
- If additional information tells us something is abnormal, retract former conclusion.
 - \Rightarrow Conclusions do not grow monotonically with premises.
- Classical logic cannot model this, as it is monotonic:

$$X \subseteq Y \Rightarrow Th(X) \subseteq Th(Y).$$

- Why? *q* follows from *X* if *q* holds in all models of *X*. Models of *Y* a subset, thus *q* holds in all of them as well.
- Observation led to the AI field of nonmonotonic reasoning, active for over 30 years.

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.
- If additional information tells us something is abnormal, retract former conclusion.
 - \Rightarrow Conclusions do not grow monotonically with premises.
- Classical logic cannot model this, as it is monotonic:

$$X \subseteq Y \Rightarrow Th(X) \subseteq Th(Y).$$

- Why? *q* follows from *X* if *q* holds in all models of *X*. Models of *Y* a subset, thus *q* holds in all of them as well.
- Observation led to the AI field of nonmonotonic reasoning, active for over 30 years.

Defaults may give rise to conflicting conclusions:

(1) Quakers normally are pacifists.(2) Republicans normally are not pacifists.(3) Nixon is a quaker and a republican.

- (1) and (2) conflicting.
- Nothing wrong with the defaults!
- Different approaches to deal with this:
 - some apply none of the conflicting defaults,
 - most generate different acceptable belief sets (extensions) leave open whether to use them sceptically (*p* true in all of them) or credulously (*p* true in some of them, or in a particular one).

• • • • • • • • • • • • •

Defaults may give rise to conflicting conclusions:

(1) Quakers normally are pacifists.(2) Republicans normally are not pacifists.(3) Nixon is a quaker and a republican.

- (1) and (2) conflicting.
- Nothing wrong with the defaults!
- Different approaches to deal with this:
 - some apply none of the conflicting defaults,
 - most generate different acceptable belief sets (extensions) leave open whether to use them sceptically (*p* true in all of them) or credulously (*p* true in some of them, or in a particular one).

• • • • • • • • • • • •

- Check the course time table
 - Question: Is the course on Knowledge Representation on Friday?
 - Your answer (presumably): No
- Why is this answer correct?
- Does not follow from the explicit information in the time table
- But: follows from this information *assuming that the list of courses is complete*
- You (presumably) used this assumption, and do so in many everyday contexts

- Check the course time table
 - Question: Is the course on Knowledge Representation on Friday?
 - Your answer (presumably): No
- Why is this answer correct?
- Does not follow from the explicit information in the time table
- But: follows from this information *assuming that the list of courses is complete*
- You (presumably) used this assumption, and do so in many everyday contexts

- Check the course time table
 - Question: Is the course on Knowledge Representation on Friday?
 - Your answer (presumably): No
- Why is this answer correct?
- Does not follow from the explicit information in the time table
- But: follows from this information assuming that the list of courses is complete
- You (presumably) used this assumption, and do so in many everyday contexts

The Closed World Assumption, ctd.

• In many situations way more negative than positive facts.

- Communication convention: represent the latter only, leave the former implicit.
 - train/flight schedules
 - TV programs
 - library catalogues
 - list of lectures
- Know how to infer negative information based on completeness assumption.

A (1) > A (2) > A

- In many situations way more negative than positive facts.
- Communication convention: represent the latter only, leave the former implicit.
 - train/flight schedules
 - TV programs
 - library catalogues
 - list of lectures
- Know how to infer negative information based on completeness assumption.

- In many situations way more negative than positive facts.
- Communication convention: represent the latter only, leave the former implicit.
 - train/flight schedules
 - TV programs
 - library catalogues
 - list of lectures
- Know how to infer negative information based on completeness assumption.

Reiter's formalization

• Let *KB* be a set of formulas, define new form of entailment under CWA:

 $\textit{KB} \models_{\textit{c}} \alpha \text{ iff } \textit{KB} \cup \textit{Negs} \models \alpha$

where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$

- \models_c nonmonotonic, for instance $\{a\} \models_c \neg b$ whereas $\{a, b\} \not\models_c \neg b$
- CWA makes knowledge complete: for arbitrary α (without quantifiers) we have $KB \models_c \alpha$ or $KB \models_c \neg \alpha$.
- Recursive query evaluation; queries reduced to atomic case.
- Results extend to quantified formulas if we add *domain closure assumption* (each object named by constant) and *unique names assumption* (different constants denote different objects).

< 日 > < 同 > < 回 > < 回 > < □ > <

• Let *KB* be a set of formulas, define new form of entailment under CWA:

 $\textit{KB} \models_{\textit{c}} \alpha \text{ iff } \textit{KB} \cup \textit{Negs} \models \alpha$

where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$

- \models_c nonmonotonic, for instance $\{a\} \models_c \neg b$ whereas $\{a, b\} \not\models_c \neg b$
- CWA makes knowledge complete: for arbitrary α (without quantifiers) we have $KB \models_c \alpha$ or $KB \models_c \neg \alpha$.
- Recursive query evaluation; queries reduced to atomic case.
- Results extend to quantified formulas if we add *domain closure assumption* (each object named by constant) and *unique names assumption* (different constants denote different objects).

< 日 > < 同 > < 回 > < 回 > < □ > <

• Let *KB* be a set of formulas, define new form of entailment under CWA:

 $\textit{KB} \models_{\textit{c}} \alpha \text{ iff } \textit{KB} \cup \textit{Negs} \models \alpha$

where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$

- \models_c nonmonotonic, for instance $\{a\} \models_c \neg b$ whereas $\{a, b\} \not\models_c \neg b$
- CWA makes knowledge complete: for arbitrary α (without quantifiers) we have $KB \models_c \alpha$ or $KB \models_c \neg \alpha$.
- Recursive query evaluation; queries reduced to atomic case.
- Results extend to quantified formulas if we add *domain closure assumption* (each object named by constant) and *unique names assumption* (different constants denote different objects).

イロト 不得 トイヨト イヨト
• Let *KB* be a set of formulas, define new form of entailment under CWA:

 $\textit{KB} \models_{\textit{c}} \alpha \text{ iff } \textit{KB} \cup \textit{Negs} \models \alpha$

where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$

- \models_c nonmonotonic, for instance $\{a\} \models_c \neg b$ whereas $\{a, b\} \not\models_c \neg b$
- CWA makes knowledge complete: for arbitrary α (without quantifiers) we have $KB \models_c \alpha$ or $KB \models_c \neg \alpha$.
- Recursive query evaluation; queries reduced to atomic case.
- Results extend to quantified formulas if we add *domain closure assumption* (each object named by constant) and *unique names assumption* (different constants denote different objects).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

- Works for simple cases only, e.g. KB a set of atoms.
- Assume $KB \models (p \lor q)$, but $KB \nvDash p$ and $KB \nvDash q$.
- CWA best viewed as a method for restricted contexts (e.g. databases).

Standard Reference:

Reiter, Raymond (1978). *On Closed World Data Bases*. In Gallaire, H.; Minker, J., Logic and Data Bases. Plenum Press. pp. 119-140.

A (1) > A (2) > A

- Works for simple cases only, e.g. KB a set of atoms.
- Assume $KB \models (p \lor q)$, but $KB \nvDash p$ and $KB \nvDash q$.
- CWA best viewed as a method for restricted contexts (e.g. databases).

Standard Reference:

Reiter, Raymond (1978). *On Closed World Data Bases*. In Gallaire, H.; Minker, J., Logic and Data Bases. Plenum Press. pp. 119-140.

Weaker versions of CWA

• Geneneralized CWA (Minker, 1982):

 $Negs = \{ \neg p \mid p \text{ atomic and for every positive clause } C \\ \text{with } KB \not\models C, KB \not\models C \lor p \}$

• Extended Generalized CWA (Yahya and Henschen, 1985):

 $Negs = \{ \neg K \mid K \text{ a conjunction of atoms and for every positive} \\ clause C \text{ with } KB \not\models C, KB \not\models C \lor K \}$

 Further refinements partition atoms into different groups (Careful CWA, Extended CWA). Extended CWA is equivalent to cirucmscription for proposotional logic.

G. Brewka, S. Woltran (Leipzig)

Weaker versions of CWA

• Geneneralized CWA (Minker, 1982):

Negs = { $\neg p \mid p$ atomic and for every positive clause *C* with *KB* $\not\models$ *C*, *KB* $\not\models$ *C* \lor *p*}

• Extended Generalized CWA (Yahya and Henschen, 1985):

 $Negs = \{ \neg K \mid K \text{ a conjunction of atoms and for every positive} \\ clause C \text{ with } KB \not\models C, KB \not\models C \lor K \}$

 Further refinements partition atoms into different groups (Careful CWA, Extended CWA). Extended CWA is equivalent to cirucmscription for proposotional logic.

G. Brewka, S. Woltran (Leipzig)

Weaker versions of CWA

• Geneneralized CWA (Minker, 1982):

Negs = { $\neg p \mid p$ atomic and for every positive clause *C* with *KB* $\not\models$ *C*, *KB* $\not\models$ *C* \lor *p*}

• Extended Generalized CWA (Yahya and Henschen, 1985):

 $Negs = \{ \neg K \mid K \text{ a conjunction of atoms and for every positive} \\ clause C \text{ with } KB \not\models C, KB \not\models C \lor K \}$

 Further refinements partition atoms into different groups (Careful CWA, Extended CWA). Extended CWA is equivalent to cirucmscription for proposotional logic.

G. Brewka, S. Woltran (Leipzig)

Nonmonotonic Reasoning

The Big Three and ASP

・ロト ・日下 ・ ヨト ・

4. Preferences Among Formulas: Poole and Beyond

- Treat defaults as classical formulas with lower priority.
- Partition KB into (consistent) strict part *F* and defeasible part *W*.
- In case of a conflict give up formulas from the latter set, that is consider "scenarios" (Poole) of the form

$F \cup W'$

where W' is a maximal *F*-consistent subset of *W*.

Example

 $F = \{bird(tweety), bird(fritz), \neg flies(fritz)\}$ $W = \{bird(tweety) \rightarrow flies(tweety), bird(fritz) \rightarrow flies(fritz)\}$ Scenario: $F \cup \{bird(tweety) \rightarrow flies(tweety)\}$ Conclude flies(tweety) from single scenario.

G. Brewka, S. Woltran (Leipzig)

WS 2013/14 14 / 40

4. Preferences Among Formulas: Poole and Beyond

- Treat defaults as classical formulas with lower priority.
- Partition KB into (consistent) strict part F and defeasible part W.
- In case of a conflict give up formulas from the latter set, that is consider "scenarios" (Poole) of the form

$F \cup W'$

where W' is a maximal *F*-consistent subset of *W*.

Example

 $F = \{bird(tweety), bird(fritz), \neg flies(fritz)\}\$ $W = \{bird(tweety) \rightarrow flies(tweety), bird(fritz) \rightarrow flies(fritz)\}\$ Scenario: $F \cup \{bird(tweety) \rightarrow flies(tweety)\}\$ Conclude flies(tweety) from single scenario.

G. Brewka, S. Woltran (Leipzig)

・ロト ・ 四ト ・ ヨト ・ ヨト

Poole, ctd.

- May get multiple scenarios.
- Skeptical vs. credulous reasoning: *p* follows from all scenarios vs. *p* follows from some scenario.

Example

 $F = \{bird(tweety), peng(tweety)\}$ $W = \{bird(tweety) \rightarrow flies(tweety), peng(tweety) \rightarrow \neg flies(tweety)\}$ Scenario 1: $F \cup \{bird(tweety) \rightarrow flies(tweety)\}$ Scenario 2: $F \cup \{peng(tweety) \rightarrow \neg flies(tweety)\}$ neither flies(tweety) nor $\neg flies(tweety)$ follows skeptically.

- Important to represent instances of *Birds fly*, not universal formula (otherwise single nonflying bird eliminates the default).
- Example suggests generalization: defaults preferred to others.

Poole, ctd.

- May get multiple scenarios.
- Skeptical vs. credulous reasoning: *p* follows from all scenarios vs. *p* follows from some scenario.

Example

$$\begin{split} F &= \{bird(tweety), peng(tweety)\}\\ W &= \{bird(tweety) \rightarrow flies(tweety), peng(tweety) \rightarrow \neg flies(tweety)\}\\ \text{Scenario 1: } F \cup \{bird(tweety) \rightarrow flies(tweety)\}\\ \text{Scenario 2: } F \cup \{peng(tweety) \rightarrow \neg flies(tweety)\}\\ \text{neither } flies(tweety) \text{ nor } \neg flies(tweety) \text{ follows skeptically.} \end{split}$$

- Important to represent instances of *Birds fly*, not universal formula (otherwise single nonflying bird eliminates the default).
- Example suggests generalization: defaults preferred to others.

Poole, ctd.

- May get multiple scenarios.
- Skeptical vs. credulous reasoning: *p* follows from all scenarios vs. *p* follows from some scenario.

Example

$$\begin{split} F &= \{bird(tweety), peng(tweety)\}\\ W &= \{bird(tweety) \rightarrow flies(tweety), peng(tweety) \rightarrow \neg flies(tweety)\}\\ \text{Scenario 1: } F \cup \{bird(tweety) \rightarrow flies(tweety)\}\\ \text{Scenario 2: } F \cup \{peng(tweety) \rightarrow \neg flies(tweety)\}\\ \text{neither } flies(tweety) \text{ nor } \neg flies(tweety) \text{ follows skeptically.} \end{split}$$

- Important to represent instances of *Birds fly*, not universal formula (otherwise single nonflying bird eliminates the default).
- Example suggests generalization: defaults preferred to others.

- Basic idea: introduce arbitrary preference levels.
- Rather than (F, W) use partition $KB = (F_1, \ldots, F_n)$; F_1 most reliable formulas, F_2 second best, etc.
- Preferred subtheory: maxi-consistent subset S of F₁ ∪ ... ∪ F_n containing maxi-consistent subset of F₁ ∪ ... ∪ F_i for each i ≤ n.
- Intuition: pick maxi-consistent subset of *F*₁, extend it maximally with formulas from *F*₂, etc.

- $F_1 = \{bird(tweety), penguin(tweety)\}$
- $F_2 = \{penguin(tweety) \rightarrow \neg flies(tweety)\}$
- $F_3 = \{bird(tweety) \rightarrow flies(tweety)\}$

Single preferred subtheory: $F_1 \cup F_2$

¬flies(tweety) follows skeptically

- Simple approach reducing default reasoning to inconsistency handling.
- No nonstandard semantics, no nonstandard language constructs.
- Easy handling of preferences.
- Quantitative extensions straightforward, e.g. reliability value for each formula, consistent subsets ranked by sum of values.
- Less expressive than other approaches, e.g. implicit default contraposition.

イロト イヨト イヨト イヨト

- Simple approach reducing default reasoning to inconsistency handling.
- No nonstandard semantics, no nonstandard language constructs.
- Easy handling of preferences.
- Quantitative extensions straightforward, e.g. reliability value for each formula, consistent subsets ranked by sum of values.
- Less expressive than other approaches, e.g. implicit default contraposition.

< ロ > < 同 > < 回 > < 回 >

- Simple approach reducing default reasoning to inconsistency handling.
- No nonstandard semantics, no nonstandard language constructs.
- Easy handling of preferences.
- Quantitative extensions straightforward, e.g. reliability value for each formula, consistent subsets ranked by sum of values.
- Less expressive than other approaches, e.g. implicit default contraposition.

- Simple approach reducing default reasoning to inconsistency handling.
- No nonstandard semantics, no nonstandard language constructs.
- Easy handling of preferences.
- Quantitative extensions straightforward, e.g. reliability value for each formula, consistent subsets ranked by sum of values.
- Less expressive than other approaches, e.g. implicit default contraposition.

• • • • • • • • • • • •

- CWA makes extension of all predicates as small as possible (1st order) or as many atoms false as possible (propositional).
- Let's do this for selected predicates/atoms only.
- Corresponds to focus on specific minimal models.
- Solves inconsistency problem of CWA.
- Comes with a default representation scheme (ab predicates):

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x).$$

- CWA makes extension of all predicates as small as possible (1st order) or as many atoms false as possible (propositional).
- · Let's do this for selected predicates/atoms only.
- Corresponds to focus on specific minimal models.
- Solves inconsistency problem of CWA.
- Comes with a default representation scheme (ab predicates):

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x).$$

- CWA makes extension of all predicates as small as possible (1st order) or as many atoms false as possible (propositional).
- · Let's do this for selected predicates/atoms only.
- Corresponds to focus on specific minimal models.
- Solves inconsistency problem of CWA.
- Comes with a default representation scheme (ab predicates):

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x).$$

- CWA makes extension of all predicates as small as possible (1st order) or as many atoms false as possible (propositional).
- Let's do this for selected predicates/atoms only.
- Corresponds to focus on specific minimal models.
- Solves inconsistency problem of CWA.
- Comes with a default representation scheme (ab predicates):

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x).$$

- CWA makes extension of all predicates as small as possible (1st order) or as many atoms false as possible (propositional).
- Let's do this for selected predicates/atoms only.
- Corresponds to focus on specific minimal models.
- · Solves inconsistency problem of CWA.
- Comes with a default representation scheme (ab predicates):

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x).$$

- CWA makes extension of all predicates as small as possible (1st order) or as many atoms false as possible (propositional).
- Let's do this for selected predicates/atoms only.
- Corresponds to focus on specific minimal models.
- Solves inconsistency problem of CWA.
- Comes with a default representation scheme (ab predicates):

$$\forall x.Bird(x) \land \neg Ab(x) \rightarrow Flies(x).$$

 $\mathit{KB} = \{\mathit{bird}, \mathit{bird} \land \neg \mathit{ab} \rightarrow \mathit{flies}\}$

Models:

 $M_1 = \{bird, ab, flies\}, M_2 = \{bird, ab, \neg flies\}, M_3 = \{bird, \neg ab, flies\}$

- M_1 and M_2 contain an abnormality.
- Only in M_3 nothing is abnormal.
- Focus on models representing most normal situations.
- Accept a formula if it's true in those models: here flies.

 $\textit{KB} = \{\textit{bird},\textit{bird} \land \neg\textit{ab} \rightarrow \textit{flies}\}$

Models:

 $M_1 = \{bird, ab, flies\}, M_2 = \{bird, ab, \neg flies\}, M_3 = \{bird, \neg ab, flies\}$

- M_1 and M_2 contain an abnormality.
- Only in M_3 nothing is abnormal.
- Focus on models representing most normal situations.
- Accept a formula if it's true in those models: here flies.

 $\textit{KB} = \{\textit{bird},\textit{bird} \land \neg\textit{ab} \rightarrow \textit{flies}\}$

Models:

 $M_1 = \{bird, ab, flies\}, M_2 = \{bird, ab, \neg flies\}, M_3 = \{bird, \neg ab, flies\}$

- M_1 and M_2 contain an abnormality.
- Only in M_3 nothing is abnormal.
- Focus on models representing most normal situations.
- Accept a formula if it's true in those models: here flies.

• Given two interpretations over the same domain, I_1 and I_2 . Let

 $I_1 \leq I_2$ iff $I_1[Ab] \subseteq I_2[Ab]$ for every Ab predicate,

- $I_1 < I_2$ iff $I_1 \le I_2$ but not $I_2 \le I_1$.
- Define a new version of entailment:

 $KB \models_{\leq} \alpha$ iff for every *I*, $I \models \alpha$ whenever $I \models KB$ and for no I' < I we have $I' \models KB$.

• So α must be true in all interpretations satisfying KB that are minimal in abnormalities.

- A 🖻 🕨

• Given two interpretations over the same domain, I_1 and I_2 . Let

 $I_1 \leq I_2$ iff $I_1[Ab] \subseteq I_2[Ab]$ for every Ab predicate,

- $I_1 < I_2$ iff $I_1 \le I_2$ but not $I_2 \le I_1$.
- Define a new version of entailment:

 $KB \models_{\leq} \alpha$ iff for every *I*, $I \models \alpha$ whenever $I \models KB$ and for no I' < I we have $I' \models KB$.

- So α must be true in all interpretations satisfying KB that are minimal in abnormalities.

• Given two interpretations over the same domain, I_1 and I_2 . Let

 $I_1 \leq I_2$ iff $I_1[Ab] \subseteq I_2[Ab]$ for every Ab predicate,

- $I_1 < I_2$ iff $I_1 \le I_2$ but not $I_2 \le I_1$.
- Define a new version of entailment:

 $KB \models_{\leq} \alpha$ iff for every *I*, $I \models \alpha$ whenever $I \models KB$ and for no I' < I we have $I' \models KB$.

- So α must be true in all interpretations satisfying KB that are minimal in abnormalities.

Circumscription, ctd.

- Why is this nonmonotonic?
- Additional information may eliminate models.
- Must check the most normal among the remaining ones; may have abnormalities.

Example

$$\mathit{KB} = \{\mathit{bird}, \mathit{bird} \land \neg \mathit{ab} \to \mathit{flies}, \mathit{ab}\}$$

Models:

 $M_1 = \{bird, ab, flies\}, M_2 = \{bird, ab, \neg flies\}, M_3 \text{ no longer a model.}$

- Both M_1 and M_2 are as normal as possible.
- *flies* no longer in all most normal models.

Circumscription, ctd.

- Why is this nonmonotonic?
- Additional information may eliminate models.
- Must check the most normal among the remaining ones; may have abnormalities.

Example

$$\mathit{KB} = \{\mathit{bird}, \mathit{bird} \land \neg \mathit{ab} \to \mathit{flies}, \mathit{ab}\}$$

Models:

 $M_1 = \{bird, ab, flies\}, M_2 = \{bird, ab, \neg flies\}, M_3 \text{ no longer a model.}$

- Both M₁ and M₂ are as normal as possible.
- *flies* no longer in all most normal models.

< 🗇 🕨 < 🖻 🕨

Circumscription, ctd.

- Why is this nonmonotonic?
- Additional information may eliminate models.
- Must check the most normal among the remaining ones; may have abnormalities.

Example

$$\mathit{KB} = \{\mathit{bird}, \mathit{bird} \land \neg \mathit{ab} \rightarrow \mathit{flies}, \mathit{ab}\}$$

Models:

 $M_1 = \{bird, ab, flies\}, M_2 = \{bird, ab, \neg flies\}, M_3 \text{ no longer a model.}$

- Both M_1 and M_2 are as normal as possible.
- flies no longer in all most normal models.

Circumscription: 2nd order characterization

• Circumscription can be represented as a second order formula.

T(P) first order formula containing predicate symbol *P*. T(p) obtained from T(P) by replacing each occurrence of *P* by variable *p*. Abbreviations:

$$egin{aligned} P &\leq Q ext{ for } orall x. P(x) o Q(x) \ P &< Q ext{ for } P &\leq Q ext{ and not } Q &\leq P \end{aligned}$$

Circ(P, T(P)), the circumscription of P in T(P):

 $T(P) \land \neg \exists p.(T(p) \land p < P)$

- Intuition: *T*(*P*) and there is no predicate smaller than *P* satisfying everything *T* says about *P*.
- Theorem: $T(Ab) \models_{\leq} q$ iff q consequence of Circ(Ab, T(Ab)).

• Circumscription a skeptical approach: conflicting defaults cancel each other.

- Problem: 2nd order logic not even semi-decidable.
- Various results about when 2nd order formula has equivalent 1st order representation (Lifschitz).
- For restricted cases standard theorem provers can be used.
- Various more flexible variants of circumscription were defined: fixed predicates, preferences,
- They all have corresponding 2nd order formula.

- ∢ ∃ ▶

- Circumscription a skeptical approach: conflicting defaults cancel each other.
- Problem: 2nd order logic not even semi-decidable.
- Various results about when 2nd order formula has equivalent 1st order representation (Lifschitz).
- For restricted cases standard theorem provers can be used.
- Various more flexible variants of circumscription were defined: fixed predicates, preferences,
- They all have corresponding 2nd order formula.

< A > < A > >
- Circumscription a skeptical approach: conflicting defaults cancel each other.
- Problem: 2nd order logic not even semi-decidable.
- Various results about when 2nd order formula has equivalent 1st order representation (Lifschitz).
- For restricted cases standard theorem provers can be used.
- Various more flexible variants of circumscription were defined: fixed predicates, preferences,
- They all have corresponding 2nd order formula.

A (1) > A (2) > A

- Circumscription a skeptical approach: conflicting defaults cancel each other.
- Problem: 2nd order logic not even semi-decidable.
- Various results about when 2nd order formula has equivalent 1st order representation (Lifschitz).
- For restricted cases standard theorem provers can be used.
- Various more flexible variants of circumscription were defined: fixed predicates, preferences,
- They all have corresponding 2nd order formula.

• To represent defaults, Reiter uses rules of the form

 $A: B_1, \ldots, B_n/C$

where A, B_i, C are formulas.

- Intuition: if *A* believed and each *B_i* consistent with beliefs, then infer *C*.
- Default theory: (*D*, *W*), *D* set of defaults, *W* set of formulas representing what is known to be true.
- Default theories generate extensions: acceptable sets of beliefs.
- Main problem: cannot apply defaults constructively; consistency condition must hold with respect to final outcome.
- Reiter's fixpoint solution: guess the final outcome and verify that the guess was good.

• To represent defaults, Reiter uses rules of the form

 $A: B_1, \ldots, B_n/C$

where A, B_i, C are formulas.

- Intuition: if *A* believed and each *B_i* consistent with beliefs, then infer *C*.
- Default theory: (*D*, *W*), *D* set of defaults, *W* set of formulas representing what is known to be true.
- Default theories generate extensions: acceptable sets of beliefs.
- Main problem: cannot apply defaults constructively; consistency condition must hold with respect to final outcome.
- Reiter's fixpoint solution: guess the final outcome and verify that the guess was good.

• To represent defaults, Reiter uses rules of the form

 $A: B_1, \ldots, B_n/C$

where A, B_i, C are formulas.

- Intuition: if *A* believed and each *B_i* consistent with beliefs, then infer *C*.
- Default theory: (*D*, *W*), *D* set of defaults, *W* set of formulas representing what is known to be true.
- Default theories generate extensions: acceptable sets of beliefs.
- Main problem: cannot apply defaults constructively; consistency condition must hold with respect to final outcome.
- Reiter's fixpoint solution: guess the final outcome and verify that the guess was good.

• To represent defaults, Reiter uses rules of the form

 $A: B_1, \ldots, B_n/C$

where A, B_i, C are formulas.

- Intuition: if *A* believed and each *B_i* consistent with beliefs, then infer *C*.
- Default theory: (*D*, *W*), *D* set of defaults, *W* set of formulas representing what is known to be true.
- Default theories generate extensions: acceptable sets of beliefs.
- Main problem: cannot apply defaults constructively; consistency condition must hold with respect to final outcome.
- Reiter's fixpoint solution: guess the final outcome and verify that the guess was good.

G. Brewka, S. Woltran (Leipzig)

Motivation of fixpoint construction

- Properties an extension E should satisfy
 - 1 should contain W and be deductively closed,
 - 2 all defaults applicable wrt. E must have been applied,
 - (3) no formula in E without reasonable derivation from W, possibly using applicable defaults.
- (3) not achieved by considering minimal sets satisfying (1),(2).

Example

 $D = \{ prof(x) : teaches(x) / teaches(x) \}$

 $W = \{prof(gerd)\}$

 $Th(\{prof(gerd), \neg teaches(gerd)\})$ minimal set satisfying (1),(2).

Obviously not intended: ¬*teaches(gerd)* out of the blue.

• • • • • • • • • • • •

Motivation of fixpoint construction

- Properties an extension E should satisfy
 - 1 should contain W and be deductively closed,
 - 2 all defaults applicable wrt. E must have been applied,
 - 3 no formula in E without reasonable derivation from W, possibly using applicable defaults.
- (3) not achieved by considering minimal sets satisfying (1),(2).

Example

$$D = \{ prof(x) : teaches(x) / teaches(x) \}$$

 $W = \{prof(gerd)\}$

 $Th(\{prof(gerd), \neg teaches(gerd)\})$ minimal set satisfying (1),(2).

Obviously not intended: ¬*teaches*(*gerd*) out of the blue.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The problem

- Standard inference: iterative construction of closure; at each step apply inference rule applicable wrt. what was derived so far.
- What is inferred once remains conclusion forever.
- Not so for defaults: consistency at some stage may be lost later.

Example

$$D = \{p: q/r, p: s/s, s: \neg q/\neg q\}$$

 $w = \{p\}$

Sequence of sets generated by applicable defaults and deduction:

 $E_0 = \{p\}; E_1 = Th(\{p, r, s\}); E_2 = Th(\{p, r, s, \neg q\})$

p: q/r applied to construct E_1 ; q inconsistent with E_2 .

The problem

- Standard inference: iterative construction of closure; at each step apply inference rule applicable wrt. what was derived so far.
- What is inferred once remains conclusion forever.
- Not so for defaults: consistency at some stage may be lost later.

Example

$$D = \{p: q/r, p: s/s, s: \neg q/\neg q\}$$

Sequence of sets generated by applicable defaults and deduction:

$$E_0 = \{p\}; E_1 = Th(\{p, r, s\}); E_2 = Th(\{p, r, s, \neg q\})$$

p: q/r applied to construct E_1 ; q inconsistent with E_2 .

< ロ > < 同 > < 回 > < 回 >

- Guess outcome of inference process; verify it's justified.
- Define operator assigning to each *S* the outcome of the construction *when consistency is tested against S*.
- Fixpoints of the operator then are what we are looking for.

Definition

Let $\Delta = (D, W)$ be a default theory, *S* a set of formulas. $\Gamma_{\Delta}(S)$ is the smallest set of formulas satisfying

$$W \subseteq \Gamma_{\Delta}(S),$$

- 2 $Th(\Gamma_{\Delta}(S)) = \Gamma_{\Delta}(S),$
- **③** if *a* : *b*₁,...*b*_{*n*}/*c* ∈ *D*, *a* ∈ Γ_Δ(*S*), each ¬*b*_{*i*} not in *S*, then $c \in \Gamma_{\Delta}(S)$.

E is an extension of Δ iff *E* is a fixpoint of Γ_{Δ} .

- Guess outcome of inference process; verify it's justified.
- Define operator assigning to each *S* the outcome of the construction *when consistency is tested against S*.
- Fixpoints of the operator then are what we are looking for.

Definition

Let $\Delta = (D, W)$ be a default theory, *S* a set of formulas. $\Gamma_{\Delta}(S)$ is the smallest set of formulas satisfying

E is an extension of Δ iff *E* is a fixpoint of Γ_{Δ} .

D	W	Extensions
bird : flies/flies	bird	$Th(W \cup \{flies\})$
bird : flies/flies	bird, peng peng $\rightarrow \neg$ flies	Th(W)
bird : flies/flies peng : ¬flies/¬flies	bird, peng	$ig Th(W \cup \{flies\}) \ Th(W \cup \{\neg flies\})$
bird : flies ∧ ¬peng/flies peng : ¬flies/¬flies	bird, peng	$Th(W \cup \{\neg flies\})$

イロト イヨト イヨト イヨト

Results

• Extensions may not exist: $\Delta = (\{true : \neg a/a\}, \emptyset).$

• Types of defaults:

- Normal: *p* : *q*/*q*. Normal default theories always have extensions.
- Supernormal: *true* : *q*/*q*. Can model Poole systems.
- Seminormal: true : p ∧ q/q. Used to encode preferences. Extensions may not exist.
- Extensions subset minimal: E_1, E_2 extensions $\Rightarrow E_1 \not\subseteq E_2$.
- *W* inconsistent iff set of all formulas single extension.
- Defaults with open variables: usually viewed as schemata.

Results

- Extensions may not exist: $\Delta = (\{true : \neg a/a\}, \emptyset).$
- Types of defaults:
 - Normal: p: q/q.
 Normal default theories always have extensions.
 - Supernormal: true : q/q. Can model Poole systems.
 - Seminormal: true : p ∧ q/q. Used to encode preferences. Extensions may not exist.
- Extensions subset minimal: E_1, E_2 extensions $\Rightarrow E_1 \nsubseteq E_2$.
- *W* inconsistent iff set of all formulas single extension.
- Defaults with open variables: usually viewed as schemata.

- Extensions may not exist: $\Delta = (\{true : \neg a/a\}, \emptyset).$
- Types of defaults:
 - Normal: *p* : *q*/*q*. Normal default theories always have extensions.
 - Supernormal: true : q/q. Can model Poole systems.
 - Seminormal: true : p ∧ q/q. Used to encode preferences. Extensions may not exist.
- Extensions subset minimal: E_1, E_2 extensions $\Rightarrow E_1 \not\subseteq E_2$.
- W inconsistent iff set of all formulas single extension.
- Defaults with open variables: usually viewed as schemata.

7. Answer Sets

- Answer sets (alias stable models for programs considered here) provide semantics for logic programs with not.
- Logic programming initially independent of nonmon.
- Default negation not interpreted procedurally: negation as failure.
- Problems with cycles.

Example

 $a \leftarrow \operatorname{not} b, \quad b \leftarrow \operatorname{not} a$

a provable iff proof for *b* fails iff proof of a succeeds iff ...

- Solution: bring in ideas from nonmon.
- Language restriction basis for highly successful implementations.
- Shift from theorems to models basis for ASP paradigm.

7. Answer Sets

- Answer sets (alias stable models for programs considered here) provide semantics for logic programs with not.
- Logic programming initially independent of nonmon.
- Default negation not interpreted procedurally: negation as failure.
- Problems with cycles.

Example

$a \leftarrow \operatorname{not} b, \quad b \leftarrow \operatorname{not} a$

a provable iff proof for b fails iff proof of a succeeds iff ...

- Solution: bring in ideas from nonmon.
- Language restriction basis for highly successful implementations.
- Shift from theorems to models basis for ASP paradigm.

7. Answer Sets

- Answer sets (alias stable models for programs considered here) provide semantics for logic programs with not.
- Logic programming initially independent of nonmon.
- Default negation not interpreted procedurally: negation as failure.
- Problems with cycles.

Example

 $a \leftarrow \operatorname{not} b, \quad b \leftarrow \operatorname{not} a$

a provable iff proof for b fails iff proof of a succeeds iff ...

- Solution: bring in ideas from nonmon.
- Language restriction basis for highly successful implementations.
- Shift from theorems to models basis for ASP paradigm.

Answer Sets, ctd.

Definition

A (ground) normal logic program P is a collection of rules of the form

$$A \leftarrow B_1, \ldots, B_n, \operatorname{not} C_1, \ldots \operatorname{not} C_m$$

where A, B_i, C_j are ground atoms. not C reads: C is not believed.

- Answer set: atoms representing reasonable beliefs based on P.
- Intuition similar to default logic:
 - 1 Each applicable rule applied.
 - 2 No atom without valid derivation.
- Simplifications: no set *W*; beliefs fully determined by atoms.
- Identify rule with default B₁ ∧ ... ∧ B_n : ¬C₁,... ¬C_m/A and strip unneeded parts off Reiter's definition ⇒ GL-reduct.

G. Brewka, S. Woltran (Leipzig)

Answer Sets, ctd.

Definition

A (ground) normal logic program P is a collection of rules of the form

$$A \leftarrow B_1, \ldots, B_n, \operatorname{not} C_1, \ldots \operatorname{not} C_m$$

where A, B_i, C_j are ground atoms. not C reads: C is not believed.

- Answer set: atoms representing reasonable beliefs based on P.
- Intuition similar to default logic:
 - 1 Each applicable rule applied.
 - 2 No atom without valid derivation.
- Simplifications: no set *W*; beliefs fully determined by atoms.
- Identify rule with default B₁ ∧ ... ∧ B_n : ¬C₁,... ¬C_m/A and strip unneeded parts off Reiter's definition ⇒ GL-reduct.

Definition

Let P be a (ground) normal logic program, S a set of atoms.

 P^S is the program obtained form P by

- 1 eliminating rules containing not C for some $C \in S$,
- 2 eliminating negated literals from the remaining rules.

S is an answer set of P iff $S = Cl(P^S)$.

- Cl(R) denotes the closure of a set of classical inference rules
- Intuition: guess *S* and evaluate not wrt. *S*.

Atom p without valid derivation: p will not appear in Cl(P^S).
 Applicable rule r not applied: r's conclusion in Cl(P^S).

• Sets of atoms satisfying both intended properties pass the test.

• • • • • • • • • • • • •

Definition

Let P be a (ground) normal logic program, S a set of atoms.

 P^S is the program obtained form P by

- 1 eliminating rules containing not C for some $C \in S$,
- 2 eliminating negated literals from the remaining rules.

S is an answer set of P iff $S = CI(P^S)$.

- Cl(R) denotes the closure of a set of classical inference rules
- Intuition: guess *S* and evaluate not wrt. *S*.

Atom p without valid derivation: p will not appear in Cl(P^S).
 Applicable rule r not applied: r's conclusion in Cl(P^S).

• Sets of atoms satisfying both intended properties pass the test.

- Represent problem such that solutions are (parts of) answer sets.
- Commonly used method: generate and test:
 - 1 Generate candidate sets of atoms.
 - 2 Eliminate those not satisfying intended properties.
 - 3 Elimination via rules without head.
- Observation: if P does not contain q, then

 $q \leftarrow \operatorname{not} q, body$

eliminates answer sets satisfying body.

• Abbreviation: ← *body*.

- Definition of answer sets for propositional programs.
- Variables useful for problem descriptions.
- Rule with variables shorthand for all ground instances of the rule.
- ASP system: grounder + solver.
- Grounder produces ground instantiation of program, solver computes its answer sets.

Graph coloring

Example

```
Description of graph:

node(v_1), ..., node(v_n), edge(v_i, v_j), ...
```

Generate:

 $col(X, r) \leftarrow node(X)$, not col(X, b), not col(X, g) $col(X, b) \leftarrow node(X)$, not col(X, r), not col(X, g) $col(X, g) \leftarrow node(X)$, not col(X, r), not col(X, b)

Test: $\leftarrow edge(X, Y), col(X, Z), col(Y, Z)$

Answer sets contain solution to problem!

G. Brewka, S. Woltran (Leipzig)

• • • • • • • • • • •

Meeting scheduling

Example

Problem instance:

 $meeting(m_1), \dots, meeting(m_n)$ $time(t_1), \dots, time(t_s)$ $room(r_1), \dots, room(r_m)$ $person(p_1), \dots, person(p_k)$ $par(p_1, m_1), \dots, par(p_2, m_3), \dots$

Instance independent part, generate:

 $at(M, T) \leftarrow meeting(M), time(T), not \neg at(M, T)$ $\neg at(M, T) \leftarrow meeting(M), time(T), not at(M, T)$ $in(M, R) \leftarrow meeting(M), room(R), not \neg in(M, R)$ $\neg in(M, R) \leftarrow meeting(M), room(R), not in(M, R)$

Example, ctd.

Each meeting has assigned time and room:

timeassigned(M) \leftarrow at(M, T)

 $roomassigned(M) \leftarrow in(M, R)$

- $\leftarrow meeting(M), not timeassigned(M)$
- $\leftarrow meeting(M), not roomassigned(M)$

No meeting has more than 1 time and room:

 $\leftarrow meeting(M), at(M, T), at(M, T'), T \neq T' \\ \leftarrow meeting(M), in(M, R), in(M, R'), R \neq R'$

Meetings at same time need different rooms:

 $\leftarrow \textit{in}(M, X), \textit{in}(M', X), \textit{at}(M, T), \textit{at}(M', T), M \neq M'$

Meetings with same person need different times:

 $\leftarrow par(P, M), par(P, M'), M \neq M', at(M, T), at(M', T)$

• Presented some of the major approaches to nonmon.

- Started with motivation and simple forms.
- Sketched preferred subtheories, circumscription, default logic.
- Finally presented definition of answer sets.
- Focused on the main underlying ideas.
- Many more approaches (autoepistemic logic, KLM), in particular some with implicit treatment of specificity and explicit preferences.
- Current focus: ASP solvers; argumentation.
- Preferences a natural aspect to bring in quantities.

4 A & 4

- Presented some of the major approaches to nonmon.
- Started with motivation and simple forms.
- Sketched preferred subtheories, circumscription, default logic.
- Finally presented definition of answer sets.
- Focused on the main underlying ideas.
- Many more approaches (autoepistemic logic, KLM), in particular some with implicit treatment of specificity and explicit preferences.
- Current focus: ASP solvers; argumentation.
- Preferences a natural aspect to bring in quantities.

▲ 同 ▶ | ▲ 三 ▶

- Presented some of the major approaches to nonmon.
- Started with motivation and simple forms.
- Sketched preferred subtheories, circumscription, default logic.
- Finally presented definition of answer sets.
- Focused on the main underlying ideas.
- Many more approaches (autoepistemic logic, KLM), in particular some with implicit treatment of specificity and explicit preferences.
- Current focus: ASP solvers; argumentation.
- Preferences a natural aspect to bring in quantities.

▲ 同 ▶ | ▲ 三 ▶

- Presented some of the major approaches to nonmon.
- Started with motivation and simple forms.
- Sketched preferred subtheories, circumscription, default logic.
- Finally presented definition of answer sets.
- Focused on the main underlying ideas.
- Many more approaches (autoepistemic logic, KLM), in particular some with implicit treatment of specificity and explicit preferences.
- Current focus: ASP solvers; argumentation.
- Preferences a natural aspect to bring in quantities.

- Presented some of the major approaches to nonmon.
- Started with motivation and simple forms.
- Sketched preferred subtheories, circumscription, default logic.
- Finally presented definition of answer sets.
- Focused on the main underlying ideas.
- Many more approaches (autoepistemic logic, KLM), in particular some with implicit treatment of specificity and explicit preferences.
- Current focus: ASP solvers; argumentation.
- Preferences a natural aspect to bring in quantities.

- Presented some of the major approaches to nonmon.
- Started with motivation and simple forms.
- Sketched preferred subtheories, circumscription, default logic.
- Finally presented definition of answer sets.
- Focused on the main underlying ideas.
- Many more approaches (autoepistemic logic, KLM), in particular some with implicit treatment of specificity and explicit preferences.
- Current focus: ASP solvers; argumentation.
- Preferences a natural aspect to bring in quantities.

- Presented some of the major approaches to nonmon.
- Started with motivation and simple forms.
- Sketched preferred subtheories, circumscription, default logic.
- Finally presented definition of answer sets.
- Focused on the main underlying ideas.
- Many more approaches (autoepistemic logic, KLM), in particular some with implicit treatment of specificity and explicit preferences.
- Current focus: ASP solvers; argumentation.
- Preferences a natural aspect to bring in quantities.

Suggested overview articles/books

- W. Marek and M. Truszczynski (1993). Nonmonotonic Logics: Context-Dependent Reasoning. Springer Verlag.
- G. Brewka, J. Dix, K. Konolige (1997). Nonmonotonic Reasoning -An Overview. CSLI publications, Stanford.
- D. Makinson (2005). Bridges from Classical to Nonmonotonic Logic, College Publications.
- G. Brewka, I. Niemelä, M. Truszczynski (2007). Nonmonotonic Reasoning, in: V. Lifschitz, B. Porter, F. van Harmelen (eds.), Handbook of Knowledge Representation, Elsevier, 2007, 239-284
- G. Brewka, T. Eiter, M. Truszczynski (2011). Answer set programming at a glance. Commun. ACM 54(12): 92-103

THANK YOU!

G. Brewka, S. Woltran (Leipzig)

• • • • • • • • • • • •
Suggested overview articles/books

- W. Marek and M. Truszczynski (1993). Nonmonotonic Logics: Context-Dependent Reasoning. Springer Verlag.
- G. Brewka, J. Dix, K. Konolige (1997). Nonmonotonic Reasoning -An Overview. CSLI publications, Stanford.
- D. Makinson (2005). Bridges from Classical to Nonmonotonic Logic, College Publications.
- G. Brewka, I. Niemelä, M. Truszczynski (2007). Nonmonotonic Reasoning, in: V. Lifschitz, B. Porter, F. van Harmelen (eds.), Handbook of Knowledge Representation, Elsevier, 2007, 239-284
- G. Brewka, T. Eiter, M. Truszczynski (2011). Answer set programming at a glance. Commun. ACM 54(12): 92-103

THANK YOU!

G. Brewka, S. Woltran (Leipzig)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >