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Lecture I

Background and Simple Forms of Nonmon
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1. Background and Motivation

• Classical logic allows us to represent universal statements:

∀x .PhDstudent(x)→ Student(x)

• Useful, e.g. for concept definitions or in mathematics

• Less useful to represent generic statements which may have
exceptions:

• Professors teach ... unless they are on sabbatical.
• Birds fly ... unless they are penguins.
• Owls hunt at night ... unless they live in a zoo.
• Students hate theoretical computer science ... unless they are very

clever.
• After spending 2 hours in the doctor’s waiting room patients get

angry ... unless they are close to finishing a proof.
• ...
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A solution?

• Most of our commonsense knowledge is of this kind

• What can we do to represent it adequately?

• What if instead of ∀x .Bird(x)→ Flies(x) we use

∀x .Bird(x) ∧ ¬Ab(x)→ Flies(x)

and add

∀x .Ab(x)↔ Penguin(x) ∨Ostrich(x) ∨ Injured(x) ∨ . . .

• Problem 1: no exhaustive list of abnormalities.

• Problem 2: does not give us Flies(tweety) unless tweety is known
not to be an exception.
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How to use generic information

• Want to draw conclusions from generic information as long as
nothing indicates an exception.

• If additional information tells us something is abnormal, retract
former conclusion.
⇒ Conclusions do not grow monotonically with premises.

• Classical logic cannot model this, as it is monotonic:

X ⊆ Y ⇒ Th(X ) ⊆ Th(Y ).

• Why? q follows from X if q holds in all models of X . Models of Y a
subset, thus q holds in all of them as well.

• Observation led to the AI field of nonmonotonic reasoning, active
for over 30 years.
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Conflicting Defaults

• Defaults may give rise to conflicting conclusions:
(1) Quakers normally are pacifists.
(2) Republicans normally are not pacifists.
(3) Nixon is a quaker and a republican.

• (1) and (2) conflicting.

• Nothing wrong with the defaults!

• Different approaches to deal with this:
• some apply none of the conflicting defaults,
• most generate different acceptable belief sets (extensions)

leave open whether to use them sceptically (p true in all of them)
or credulously (p true in some of them, or in a particular one).
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2. The Closed World Assumption

• Check the course time table

• Question: Is the course on Knowledge Representation on Friday?
• Your answer (presumably): No

• Why is this answer correct?

• Does not follow from the explicit information in the time table

• But: follows from this information assuming that the list of courses
is complete

• You (presumably) used this assumption, and do so in many
everyday contexts
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The Closed World Assumption, ctd.

• In many situations way more negative than positive facts.

• Communication convention: represent the latter only, leave the
former implicit.

• train/flight schedules
• TV programs
• library catalogues
• list of lectures

• Know how to infer negative information based on completeness
assumption.
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Reiter’s formalization

• Let KB be a set of formulas, define new form of entailment under
CWA:

KB |=c α iff KB ∪ Negs |= α

where Negs = {¬p | p atomic and KB 6|= p}

• |=c nonmonotonic, for instance {a} |=c ¬b whereas {a,b} 6|=c ¬b

• CWA makes knowledge complete: for arbitrary α (without
quantifiers) we have KB |=c α or KB |=c ¬α.

• Recursive query evaluation; queries reduced to atomic case.

• Results extend to quantified formulas if we add domain closure
assumption (each object named by constant) and unique names
assumption (different constants denote different objects).
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A major problem

• Works for simple cases only, e.g. KB a set of atoms.

• Assume KB |= (p ∨ q), but KB 6|= p and KB 6|= q.

• CWA best viewed as a method for restricted contexts (e.g.
databases).

Standard Reference:

Reiter, Raymond (1978). On Closed World Data Bases. In Gallaire, H.;
Minker, J., Logic and Data Bases. Plenum Press. pp. 119-140.
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Weaker versions of CWA

• Geneneralized CWA (Minker, 1982):

Negs = { ¬p | p atomic and for every positive clause C
with KB 6|= C, KB 6|= C ∨ p}

• Extended Generalized CWA (Yahya and Henschen, 1985):

Negs = { ¬K | K a conjunction of atoms and for every positive
clause C with KB 6|= C, KB 6|= C ∨ K}

• Further refinements partition atoms into different groups (Careful
CWA, Extended CWA). Extended CWA is equivalent to
cirucmscription for proposotional logic.
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Lecture II

The Big Three and ASP
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4. Preferences Among Formulas: Poole and Beyond

• Treat defaults as classical formulas with lower priority.
• Partition KB into (consistent) strict part F and defeasible part W .
• In case of a conflict give up formulas from the latter set, that is

consider “scenarios” (Poole) of the form

F ∪W ′

where W ′ is a maximal F -consistent subset of W .

Example
F = {bird(tweety),bird(fritz),¬flies(fritz)}
W = {bird(tweety)→ flies(tweety),bird(fritz)→ flies(fritz)}
Scenario: F ∪ {bird(tweety)→ flies(tweety)}
Conclude flies(tweety) from single scenario.
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Poole, ctd.

• May get multiple scenarios.
• Skeptical vs. credulous reasoning: p follows from all scenarios vs.

p follows from some scenario.

Example
F = {bird(tweety),peng(tweety)}
W = {bird(tweety)→ flies(tweety),peng(tweety)→ ¬flies(tweety)}
Scenario 1: F ∪ {bird(tweety)→ flies(tweety)}
Scenario 2: F ∪ {peng(tweety)→ ¬flies(tweety)}
neither flies(tweety) nor ¬flies(tweety) follows skeptically.

• Important to represent instances of Birds fly, not universal formula
(otherwise single nonflying bird eliminates the default).

• Example suggests generalization: defaults preferred to others.
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Scenario 2: F ∪ {peng(tweety)→ ¬flies(tweety)}
neither flies(tweety) nor ¬flies(tweety) follows skeptically.

• Important to represent instances of Birds fly, not universal formula
(otherwise single nonflying bird eliminates the default).

• Example suggests generalization: defaults preferred to others.
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Preferred subtheories

• Basic idea: introduce arbitrary preference levels.

• Rather than (F ,W ) use partition KB = (F1, . . . ,Fn); F1 most
reliable formulas, F2 second best, etc.

• Preferred subtheory: maxi-consistent subset S of F1 ∪ . . . ∪ Fn
containing maxi-consistent subset of F1 ∪ . . . ∪ Fi for each i ≤ n.

• Intuition: pick maxi-consistent subset of F1, extend it maximally
with formulas from F2, etc.
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Preferred subtheories, ctd.

Example
F1 = {bird(tweety),penguin(tweety)}

F2 = {penguin(tweety)→ ¬flies(tweety)}

F3 = {bird(tweety)→ flies(tweety)}

Single preferred subtheory: F1 ∪ F2

¬flies(tweety) follows skeptically
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Remarks

• Simple approach reducing default reasoning to inconsistency
handling.

• No nonstandard semantics, no nonstandard language constructs.

• Easy handling of preferences.

• Quantitative extensions straightforward, e.g. reliability value for
each formula, consistent subsets ranked by sum of values.

• Less expressive than other approaches, e.g. implicit default
contraposition.

A computer scientist normally doesn’t know about nonmon.
vs.

Who knows about nonmon normally isn’t a computer scientist.
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5. Preferences Among Models: Circumscription

• CWA makes extension of all predicates as small as possible (1st
order) or as many atoms false as possible (propositional).

• Let’s do this for selected predicates/atoms only.

• Corresponds to focus on specific minimal models.

• Solves inconsistency problem of CWA.

• Comes with a default representation scheme (ab predicates):

∀x .Bird(x) ∧ ¬Ab(x)→ Flies(x).

• Need several Ab predicates, one for each default.
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Circumscription, ctd.

Example
KB = {bird ,bird ∧ ¬ab → flies}

Models:

M1 = {bird ,ab, flies}, M2 = {bird ,ab,¬flies}, M3 = {bird ,¬ab, flies}

• M1 and M2 contain an abnormality.

• Only in M3 nothing is abnormal.

• Focus on models representing most normal situations.

• Accept a formula if it’s true in those models: here flies.
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Circumscription

• Given two interpretations over the same domain, I1 and I2. Let

I1 ≤ I2 iff I1[Ab] ⊆ I2[Ab] for every Ab predicate,
I1 < I2 iff I1 ≤ I2 but not I2 ≤ I1.

• Define a new version of entailment:

KB |=≤ α iff for every I,
I |= α whenever I |= KB and for no I′ < I we have I′ |= KB.

• So α must be true in all interpretations satisfying KB that are
minimal in abnormalities.
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Circumscription, ctd.

• Why is this nonmonotonic?

• Additional information may eliminate models.

• Must check the most normal among the remaining ones; may
have abnormalities.

Example
KB = {bird ,bird ∧ ¬ab → flies,ab}

Models:

M1 = {bird ,ab, flies}, M2 = {bird ,ab,¬flies}, M3 no longer a model.

• Both M1 and M2 are as normal as possible.

• flies no longer in all most normal models.
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Circumscription: 2nd order characterization

• Circumscription can be represented as a second order formula.

T (P) first order formula containing predicate symbol P. T (p) obtained
from T (P) by replacing each occurrence of P by variable p.

Abbreviations:
P ≤ Q for ∀x .P(x)→ Q(x)
P < Q for P ≤ Q and not Q ≤ P

Circ(P,T (P)), the circumscription of P in T (P):

T (P) ∧ ¬∃p.(T (p) ∧ p < P)

• Intuition: T (P) and there is no predicate smaller than P satisfying
everything T says about P.

• Theorem: T (Ab) |=≤ q iff q consequence of Circ(Ab,T (Ab)).
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Remarks

• Circumscription a skeptical approach: conflicting defaults cancel
each other.

• Problem: 2nd order logic not even semi-decidable.

• Various results about when 2nd order formula has equivalent 1st
order representation (Lifschitz).

• For restricted cases standard theorem provers can be used.

• Various more flexible variants of circumscription were defined:
fixed predicates, preferences, ....

• They all have corresponding 2nd order formula.
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6. Nonstandard inference rules: default logic

• To represent defaults, Reiter uses rules of the form

A : B1, . . . ,Bn/C

where A,Bi ,C are formulas.

• Intuition: if A believed and each Bi consistent with beliefs, then
infer C.

• Default theory: (D,W ), D set of defaults, W set of formulas
representing what is known to be true.

• Default theories generate extensions: acceptable sets of beliefs.

• Main problem: cannot apply defaults constructively; consistency
condition must hold with respect to final outcome.

• Reiter’s fixpoint solution: guess the final outcome and verify that
the guess was good.
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Motivation of fixpoint construction

• Properties an extension E should satisfy

1 should contain W and be deductively closed,
2 all defaults applicable wrt. E must have been applied,
3 no formula in E without reasonable derivation from W , possibly

using applicable defaults.

• (3) not achieved by considering minimal sets satisfying (1),(2).

Example
D = {prof (x) : teaches(x)/teaches(x)}

W = {prof (gerd)}

Th({prof (gerd),¬teaches(gerd)}) minimal set satisfying (1),(2).

Obviously not intended: ¬teaches(gerd) out of the blue.
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The problem

• Standard inference: iterative construction of closure; at each step
apply inference rule applicable wrt. what was derived so far.

• What is inferred once remains conclusion forever.

• Not so for defaults: consistency at some stage may be lost later.

Example
D = {p : q/r , p : s/s, s : ¬q/¬q}

w = {p}

Sequence of sets generated by applicable defaults and deduction:

E0 = {p}; E1 = Th({p, r , s}); E2 = Th({p, r , s,¬q})

p : q/r applied to construct E1; q inconsistent with E2.
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Reiter’s solution

• Guess outcome of inference process; verify it’s justified.

• Define operator assigning to each S the outcome of the
construction when consistency is tested against S.

• Fixpoints of the operator then are what we are looking for.

Definition
Let ∆ = (D,W ) be a default theory, S a set of formulas. Γ∆(S) is the
smallest set of formulas satisfying

1 W ⊆ Γ∆(S),
2 Th(Γ∆(S)) = Γ∆(S),
3 if a : b1, . . .bn/c ∈ D, a ∈ Γ∆(S), each ¬bi not in S, then

c ∈ Γ∆(S).

E is an extension of ∆ iff E is a fixpoint of Γ∆.
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Examples

D W Extensions

bird : flies/flies bird Th(W ∪ {flies})
bird : flies/flies bird ,peng Th(W )

peng → ¬flies

bird : flies/flies bird ,peng Th(W ∪ {flies})
peng : ¬flies/¬flies Th(W ∪ {¬flies})

bird : flies ∧ ¬peng/flies bird ,peng Th(W ∪ {¬flies})
peng : ¬flies/¬flies
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Results

• Extensions may not exist: ∆ = ({true : ¬a/a}, ∅).

• Types of defaults:
• Normal: p : q/q.

Normal default theories always have extensions.
• Supernormal: true : q/q.

Can model Poole systems.
• Seminormal: true : p ∧ q/q.

Used to encode preferences. Extensions may not exist.

• Extensions subset minimal: E1,E2 extensions⇒ E1 6⊆ E2.

• W inconsistent iff set of all formulas single extension.

• Defaults with open variables: usually viewed as schemata.
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7. Answer Sets

• Answer sets (alias stable models for programs considered here)
provide semantics for logic programs with not .

• Logic programming initially independent of nonmon.

• Default negation not interpreted procedurally: negation as failure.

• Problems with cycles.

Example
a← not b, b ← not a

a provable iff proof for b fails iff proof of a succeeds iff ...

• Solution: bring in ideas from nonmon.

• Language restriction basis for highly successful implementations.

• Shift from theorems to models basis for ASP paradigm.
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Answer Sets, ctd.

Definition
A (ground) normal logic program P is a collection of rules of the form

A← B1, . . . ,Bn, not C1, . . . not Cm

where A,Bi ,Cj are ground atoms. not C reads: C is not believed.

• Answer set: atoms representing reasonable beliefs based on P.

• Intuition similar to default logic:

1 Each applicable rule applied.
2 No atom without valid derivation.

• Simplifications: no set W ; beliefs fully determined by atoms.

• Identify rule with default B1 ∧ . . . ∧ Bn : ¬C1, . . .¬Cm/A and strip
unneeded parts off Reiter’s definition⇒ GL-reduct.
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Gelfond-Lifschitz reduct

Definition
Let P be a (ground) normal logic program, S a set of atoms.
PS is the program obtained form P by

1 eliminating rules containing not C for some C ∈ S,
2 eliminating negated literals from the remaining rules.

S is an answer set of P iff S = Cl(PS).

• Cl(R) denotes the closure of a set of classical inference rules

• Intuition: guess S and evaluate not wrt. S.

1 Atom p without valid derivation: p will not appear in Cl(PS).
2 Applicable rule r not applied: r ’s conclusion in Cl(PS).

• Sets of atoms satisfying both intended properties pass the test.
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Answer set programming

• Represent problem such that solutions are (parts of) answer sets.

• Commonly used method: generate and test:

1 Generate candidate sets of atoms.
2 Eliminate those not satisfying intended properties.
3 Elimination via rules without head.

• Observation: if P does not contain q, then

q ← not q,body

eliminates answer sets satisfying body.

• Abbreviation: ← body .

G. Brewka, S. Woltran (Leipzig) Nonmonotonic Reasoning WS 2013/14 34 / 40



Variables in programs

• Definition of answer sets for propositional programs.

• Variables useful for problem descriptions.

• Rule with variables shorthand for all ground instances of the rule.

• ASP system: grounder + solver.

• Grounder produces ground instantiation of program, solver
computes its answer sets.
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Graph coloring

Example
Description of graph:
node(v1), ...,node(vn),edge(vi , vj), . . .

Generate:
col(X , r)← node(X ), not col(X ,b), not col(X ,g)
col(X ,b)← node(X ), not col(X , r), not col(X ,g)
col(X ,g)← node(X ), not col(X , r), not col(X ,b)

Test:
← edge(X ,Y ), col(X ,Z ), col(Y ,Z )

Answer sets contain solution to problem!
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Meeting scheduling

Example
Problem instance:
meeting(m1), . . . ,meeting(mn)
time(t1), . . . , time(ts)
room(r1), . . . , room(rm)
person(p1), . . . ,person(pk )
par(p1,m1), . . . ,par(p2,m3), . . .

Instance independent part, generate:
at(M,T )← meeting(M), time(T ), not¬at(M,T )
¬at(M,T )← meeting(M), time(T ), not at(M,T )
in(M,R)← meeting(M), room(R), not¬in(M,R)
¬in(M,R)← meeting(M), room(R), not in(M,R)
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Meeting scheduling, test

Example, ctd.
Each meeting has assigned time and room:
timeassigned(M)← at(M,T )
roomassigned(M)← in(M,R)
← meeting(M), not timeassigned(M)
← meeting(M), not roomassigned(M)

No meeting has more than 1 time and room:
← meeting(M),at(M,T ),at(M,T ′),T 6= T ′

← meeting(M), in(M,R), in(M,R′),R 6= R′

Meetings at same time need different rooms:
← in(M,X ), in(M ′,X ),at(M,T ),at(M ′,T ),M 6= M ′

Meetings with same person need different times:
← par(P,M),par(P,M ′),M 6= M ′,at(M,T ),at(M ′,T )
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Summary

• Presented some of the major approaches to nonmon.

• Started with motivation and simple forms.

• Sketched preferred subtheories, circumscription, default logic.

• Finally presented definition of answer sets.
• Focused on the main underlying ideas.

• Many more approaches (autoepistemic logic, KLM), in particular
some with implicit treatment of specificity and explicit preferences.

• Current focus: ASP solvers; argumentation.

• Preferences a natural aspect to bring in quantities.
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Suggested overview articles/books

• W. Marek and M. Truszczynski (1993). Nonmonotonic Logics:
Context-Dependent Reasoning. Springer Verlag.

• G. Brewka, J. Dix, K. Konolige (1997). Nonmonotonic Reasoning -
An Overview. CSLI publications, Stanford.

• D. Makinson (2005). Bridges from Classical to Nonmonotonic
Logic, College Publications.

• G. Brewka, I. Niemelä, M. Truszczynski (2007). Nonmonotonic
Reasoning, in: V. Lifschitz, B. Porter, F. van Harmelen (eds.),
Handbook of Knowledge Representation, Elsevier, 2007, 239-284

• G. Brewka, T. Eiter, M. Truszczynski (2011). Answer set
programming at a glance. Commun. ACM 54(12): 92-103
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