3. Argumentation Frameworks

- Argumentation current hot topic in AI.
- Historically more recent than other approaches discussed here.
- Basic idea: to construct acceptable set(s) of beliefs from given KB:
 - construct arguments (beliefs with associated reasons),
 - 2 determine jointly acceptable arguments (extensions),
 - accept their conclusions.
- Assumption: step 2 can be done independently and abstractly.
- Dung's Abstract Argumentation Frameworks widely used tool.

Abstract Argumentation

- Arguments are "atomic", their structure irrelevant.
- All that matters are attacks among arguments.
- Argumentation frameworks (AFs) represent attack relations.
- Semantics formalize different intuitions about how to solve conflicts and how to pick acceptable arguments.
- Semantics map an AF to subsets of its arguments (extensions).
- Nonmonotonic: new argument may throw out what was accepted.

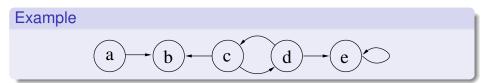
Definition

Argumentation Frameworks

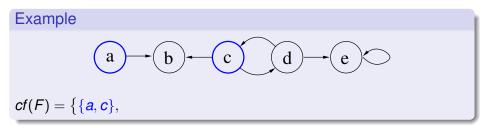
An argumentation framework (AF) is a pair (A, R) where

• A is a set of arguments,

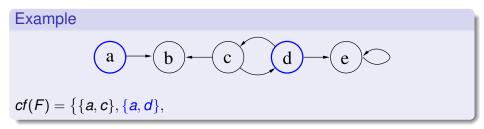
• $R \subseteq A \times A$ is a relation representing "attacks". ("defeats")

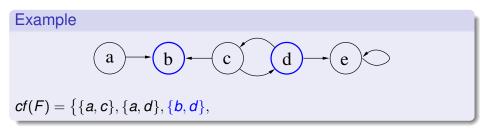

Definition

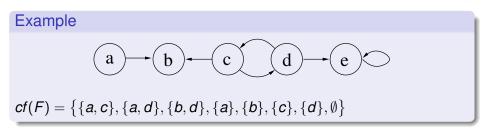
Argumentation Frameworks


An argumentation framework (AF) is a pair (A, R) where

• A is a set of arguments,

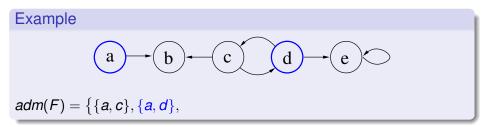

• $R \subseteq A \times A$ is a relation representing "attacks". ("defeats")


Conflict-Free Set

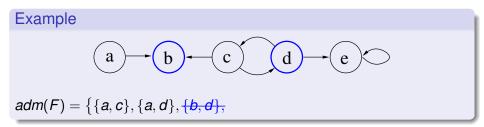

Conflict-Free Set

Conflict-Free Set

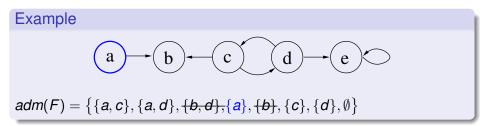
Conflict-Free Set


Admissible Set

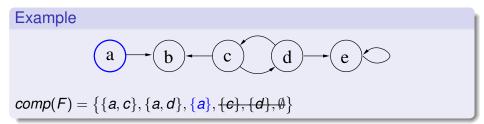
- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.


Admissible Set

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.


Admissible Set

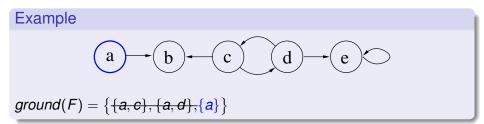
- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.


Admissible Set

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Complete Set

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.


A skeptical approach

Grounded Extension

Given an AF F = (A, R). A set $S \subseteq A$ is grounded in F, if

- S is complete in F
- for each $T \subseteq A$ complete in $F, T \not\subset S$

Proposition [Dung 95]: The grounded extension of an AF F = (A, R) is given by the least fix-point of the operator $\Gamma_F : 2^A \to 2^A$, defined as $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$

Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example a b c d e stable(F) = { $\{a, e\},$

Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example a b c d e stable(F) = { $\{a, c\}, \{a, d\}, \}$

Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example a b c d e stable(F) = { $\{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, (c, d)\}$

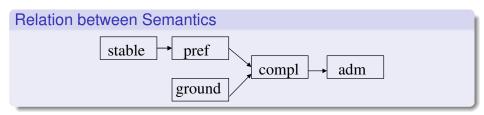
Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow$ $stable(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset \}$

Guaranteeing existence of extensions

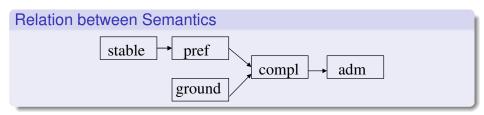

Preferred Extension

Given an AF F = (A, R). A set $S \subseteq A$ is preferred in F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $T, S \not\subset T$

Example (a) (b) (c) (d) (e) pref(F) = {{a, c}, {a, d}, {a}, {c}, {d}, {\theta}}

Complexity



Complexity

	stable	adm	pref	comp	ground
Cred	NP-c	NP-c	NP-c	NP-c	in P
Skept	coNP-C	(trivial)	П ₂ -с	in P	in P

[Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Coste-Marquis et al. 05]

Complexity

Complexity

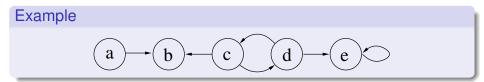
	stable	adm	pref	сотр	ground
Cred	NP-C	NP-c	NP-c	NP-c	in P
Skept	coNP-C	(trivial)	П ₂ ^P -с	in P	in P

[Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Coste-Marquis et al. 05]

- AFs: simple graph representation of argumentation scenarios.
- Semantics map AFs to a collection of sets of arguments.
 - grounded: (1) accept unattacked args, (2) delete args attacked by accepted args, (3) goto 1, stop when fixpoint reached.
 - > preferred: maximal conflict-free sets attacking all their attackers.
 - stable: conflict free sets attacking all unaccepted args.
- Grounded always unique, others may produce multiple extensions.
- Unlike stable extensions preferred extensions always exist.
- Grounded extension subset of each preferred (and thus each stable) extension.
- Extending an AF may change extensions nonmonotonically.
- Many other semantics have been defined.

- AFs: simple graph representation of argumentation scenarios.
- Semantics map AFs to a collection of sets of arguments.
 - grounded: (1) accept unattacked args, (2) delete args attacked by accepted args, (3) goto 1, stop when fixpoint reached.
 - preferred: maximal conflict-free sets attacking all their attackers.
 - stable: conflict free sets attacking all unaccepted args.
- Grounded always unique, others may produce multiple extensions.
- Unlike stable extensions preferred extensions always exist.
- Grounded extension subset of each preferred (and thus each stable) extension.
- Extending an AF may change extensions nonmonotonically.
- Many other semantics have been defined.

- AFs: simple graph representation of argumentation scenarios.
- Semantics map AFs to a collection of sets of arguments.
 - grounded: (1) accept unattacked args, (2) delete args attacked by accepted args, (3) goto 1, stop when fixpoint reached.
 - preferred: maximal conflict-free sets attacking all their attackers.
 - stable: conflict free sets attacking all unaccepted args.
- Grounded always unique, others may produce multiple extensions.
- Unlike stable extensions preferred extensions always exist.
- Grounded extension subset of each preferred (and thus each stable) extension.
- Extending an AF may change extensions nonmonotonically.
- Many other semantics have been defined.


- AFs: simple graph representation of argumentation scenarios.
- Semantics map AFs to a collection of sets of arguments.
 - grounded: (1) accept unattacked args, (2) delete args attacked by accepted args, (3) goto 1, stop when fixpoint reached.
 - preferred: maximal conflict-free sets attacking all their attackers.
 - stable: conflict free sets attacking all unaccepted args.
- Grounded always unique, others may produce multiple extensions.
- Unlike stable extensions preferred extensions always exist.
- Grounded extension subset of each preferred (and thus each stable) extension.
- Extending an AF may change extensions nonmonotonically.
- Many other semantics have been defined.

- AFs: simple graph representation of argumentation scenarios.
- Semantics map AFs to a collection of sets of arguments.
 - grounded: (1) accept unattacked args, (2) delete args attacked by accepted args, (3) goto 1, stop when fixpoint reached.
 - preferred: maximal conflict-free sets attacking all their attackers.
 - stable: conflict free sets attacking all unaccepted args.
- Grounded always unique, others may produce multiple extensions.
- Unlike stable extensions preferred extensions always exist.
- Grounded extension subset of each preferred (and thus each stable) extension.
- Extending an AF may change extensions nonmonotonically.
- Many other semantics have been defined.

- AFs: simple graph representation of argumentation scenarios.
- Semantics map AFs to a collection of sets of arguments.
 - grounded: (1) accept unattacked args, (2) delete args attacked by accepted args, (3) goto 1, stop when fixpoint reached.
 - preferred: maximal conflict-free sets attacking all their attackers.
 - stable: conflict free sets attacking all unaccepted args.
- Grounded always unique, others may produce multiple extensions.
- Unlike stable extensions preferred extensions always exist.
- Grounded extension subset of each preferred (and thus each stable) extension.
- Extending an AF may change extensions nonmonotonically.
- Many other semantics have been defined.

- AFs: simple graph representation of argumentation scenarios.
- Semantics map AFs to a collection of sets of arguments.
 - grounded: (1) accept unattacked args, (2) delete args attacked by accepted args, (3) goto 1, stop when fixpoint reached.
 - preferred: maximal conflict-free sets attacking all their attackers.
 - stable: conflict free sets attacking all unaccepted args.
- Grounded always unique, others may produce multiple extensions.
- Unlike stable extensions preferred extensions always exist.
- Grounded extension subset of each preferred (and thus each stable) extension.
- Extending an AF may change extensions nonmonotonically.
- Many other semantics have been defined.

Restrictions of AFs

- Fixed meaning of links: attack.
- Fixed acceptance condition for args: no parent accepted.
- Want more flexibility:
 - Links supporting arguments/positions,
 - Nodes not accepted unless supported,
 - Flexible means of combining attack and support.
- From calculus of opposition to calculus of support and opposition.
- Current work in our group: generalize to *Dialectical Frameworks* where each node has its own acceptance condition.

Literature

- C. Chesnevar, A. Maguitman, R. Loui: Logical models of argument. ACM Comput. Surv. 32(4): 337-383 (2000)
- T. Bench-Capon, P. Dunne: *Argumentation in Artificial Intelligence*. Artif. Intell. 171(10-15): 619-641 (2007)
- P. Besnard, A. Hunter: *Elements of Argumentation*. The MIT Press (2008).
- G. Simari, I. Rahwan (eds.): *Argumentation in Artificial Intelligence*. Springer, 2009.