A Short Introduction to Abstract Argumentation Frameworks

Stefan Woltran Technische Universität Wien

> Gerhard Brewka Universität Leipzig

> > November 2009

Argumentation in Al

Overview

- General idea: reasonable conclusions/decisions reached by
 - constructing pro and con arguments
 - evaluating arguments accordingly
- Different aspects: modeling the process, analyzing the conflicts, determining status, ... etc.
- Main distinction:
 - Abstract argumentation frameworks: attack relations, semantics
 - Oeductive argumentation frameworks: logical structure of arguments
- Common interaction: deductive AFs instantiate abstract AFs and thus inherit semantics

Argumentation in AI (ctd.)

Abstract Argumentation

- Arguments are "atomic"
- Argumentation frameworks (AFs) formalize relations (attacks) between arguments
- Semantics gives an abstract handle to solve the inherent conflicts between statements by selecting acceptable subsets

Deductive Argumentation

- Arguments are structured
- Often formulas together with supporting premises; conflicts based on contradictions
- Relationship to nonmonotonic logics

Argumentation in AI (ctd.)

Abstract Argumentation

- Arguments are "atomic"
- Argumentation frameworks (AFs) formalize relations (attacks) between arguments
- Semantics gives an abstract handle to solve the inherent conflicts between statements by selecting acceptable subsets

Deductive Argumentation

- Arguments are structured
- Often formulas together with supporting premises; conflicts based on contradictions
- Relationship to nonmonotonic logics

Argumentation Frameworks

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing "attacks" ("defeats")

Argumentation Frameworks

An argumentation framework (AF) is a pair F = (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing "attacks" ("defeats")

Example $a \rightarrow b \rightarrow c \rightarrow e \rightarrow e$

Conflict-Free Set

Conflict-Free Set

Conflict-Free Set

Conflict-Free Set

Admissible Set

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Admissible Extension

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Admissible Set

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Admissible Set

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Grounded Extension

The grounded extension of an AF F = (A, R) is given by the least fixpoint of the operator $\Gamma_F : 2^A \to 2^A$, defined as

 $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$

Preferred Extension

Given an AF F = (A, R). A set $S \subseteq A$ is preferred in F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $T, S \not\subset T$

Example $a \rightarrow b \leftarrow c \rightarrow d \rightarrow e \rightarrow$ $pref(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}$

Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example a b c d e stable(F) = { $\{a, e\},$

Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example a b c d e stable(F) = { $\{a, c\}, \{a, d\}, \}$

Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example

 $stable(F) = \left\{ \frac{\{a, c\}, \{a, d\}, \frac{\{b, d\}, \{b, d\}, \{a, d\}, \{b, d\}, a, d\} \right\}$

Stable Extension

Given an AF F = (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f$ stable(F) = {{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, {\theta}}

Connections

- each AF has a unique grounded extension
- each (finite) AF has at least one preferred extension
- existence of stable extensions is not guaranteed
- grounded extension subset of intersection of preferred extensions
- each stable extension is preferred, but not vice versa