

From Non-monotonic Logics to Abstract Argumentation

Results and Perspectives

Antrittsvorlesung
Professur für Formale Argumentation
und Logisches Schließen

4th December 2023 Leipzig

do not allow for a retraction of inferences, i.e.

If
$$S \subseteq T$$
, then $Cn(S) \subseteq Cn(T)$.
If $S \subseteq T$ and $S \models \phi$, then $T \models \phi$.

• propositional logic, first-order logic, intuitionistic logic, ...

do not allow for a retraction of inferences, i.e.

If
$$S \subseteq T$$
, then $Cn(S) \subseteq Cn(T)$.
If $S \subseteq T$ and $S \models \phi$, then $T \models \phi$.

- propositional logic, first-order logic, intuitionistic logic, ...
- monotonic reasoning is good for mathematics
- Example: group axioms, uniqueness of the neutral element

represent defeasible inference, i.e.

 $S \subseteq T$ and $Cn(S) \notin Cn(T)$ is possible.

 $S \subseteq T$, $S \models \phi$ and $T \not\models \phi$ is possible.

• default logic, circumscription, autoepistemic logic, ...

represent defeasible inference, i.e.

$$S \subseteq T$$
 and $Cn(S) \notin Cn(T)$ is possible.

$$S \subseteq T$$
, $S \models \phi$ and $T \not\models \phi$ is possible.

- default logic, circumscription, autoepistemic logic, . . .
- reason: incomplete and/or uncertain information
- defeasible reasoning is the reasoning mode for "daily life"

regional defeasibly

- Professors teach
- Birds fly
- Owls hunt at night
- Students don't like the 7th and 8th period
- Waiting for two hours at the doctor's office is frustrating
- The human heart is on the left side
- Kids like ice cream

- Professors teach ... unless they are on sabbatical.
- Birds fly
- Owls hunt at night
- Students don't like the 7th and 8th period
- Waiting for two hours at the doctor's office is frustrating
- The human heart is on the left side
- Kids like ice cream

- Professors teach
- Birds fly ... unless they are penguins.
- Owls hunt at night
- Students don't like the 7th and 8th period
- Waiting for two hours at the doctor's office is frustrating
- The human heart is on the left side
- Kids like ice cream

- Professors teach
- Birds fly
- Owls hunt at night ... unless they live in a zoo.
- Students don't like the 7th and 8th period
- Waiting for two hours at the doctor's office is frustrating
- The human heart is on the left side
- Kids like ice cream

- Professors teach
- Birds fly
- Owls hunt at night
- Students don't like the 7th and 8th period . . . unless it's their favorite subject.
- Waiting for two hours at the doctor's office is frustrating
- The human heart is on the left side
- Kids like ice cream

- Professors teach
- Birds fly
- Owls hunt at night
- Students don't like the 7th and 8th period
- Waiting for two hours at the doctor's office is frustrating ... unless you are close to finish a proof.
- The human heart is on the left side
- Kids like ice cream

- Professors teach
- Birds fly
- Owls hunt at night
- Students don't like the 7th and 8th period
- Waiting for two hours at the doctor's office is frustrating
- The human heart is on the left side . . . unless one has dextrocardia.
- Kids like ice cream

- Professors teach
- Birds fly
- Owls hunt at night
- Students don't like the 7th and 8th period
- Waiting for two hours at the doctor's office is frustrating
- The human heart is on the left side
- Kids like ice cream ... unless no exceptions!

Non-monotonic Logics

Example (Rule-based Formalism)

1. Knowledge Base

 $r_1: \Rightarrow a$

 $r_2: a \Rightarrow b$

 $r_3: b \rightarrow not a$

 $r_4: \rightarrow c$

 $r_5: c \Rightarrow not b$

If a, then normally b.

If b, then definitely not a.

Non-monotonic Logics

Example (Rule-based Formalism)

If a, then normally b.

If b, then definitely not a.

Towards Abstract Argumentation The Paradigm Shift

Seminal Paper by Phan Minh Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n- person games, AIJ, 1995.

Towards Abstract Argumentation The Paradigm Shift

Seminal Paper by Phan Minh Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n- person games, AIJ, 1995.

Two main ideas:

- non-monotonic reasoning can be modelled as a kind of argumentation
- determining the acceptability of arguments can be done on an abstract level

Abstract away from

the internal structure of arguments, and

(nodes)

 a_1 a_3 a_5

 $\left(a_{4}\right)$

Abstract away from

- the internal structure of arguments, and
- the reason why an argument attacks an other

(nodes)

(edges)

Abstract away from

- the internal structure of arguments, and (nodes)
- the reason why an argument attacks an other (edges)

an argumentation scenario is simply a directed graphs

How to select reasonable positions?

How to select reasonable positions?

Definition

A semantics is a total function

$$\sigma: \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto \sigma(F) \subseteq 2^A.$$

 $(\mathcal{F}$ - set of all AFs)

 $(\mathcal{U}$ - set of all arguments)

$$ad(F) = \{\emptyset, \{a_1\}, \{a_2\}, \{a_4\}, \{a_5\}, \{a_1, a_2\}, \{a_1, a_4\}, \{a_1, a_5\}, \{a_2, a_4\}, \{a_4, a_5\}, \{a_1, a_2, a_4\}, \{a_1, a_4, a_5\}\}$$

Definition

Admissible semantics is a total function

$$ad: \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad(F) \subseteq 2^{A}.$$

 $E \in ad(F)$ iff

 \bigcirc $\forall a, b \in E : (a, b) \notin R$

(conflict-freeness)

$$ad(F) = \{\emptyset, \{a_1\}, \{a_2\}, \{a_4\}, \{a_5\}, \{a_1, a_2\}, \{a_1, a_4\}, \{a_1, a_5\}, \{a_2, a_4\}, \{a_4, a_5\}, \{a_1, a_2, a_4\}, \{a_1, a_4, a_5\}\}$$

Definition

Admissible semantics is a total function

$$ad: \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad(F) \subseteq 2^{A}.$$

 $E \in ad(F)$ iff

 \bigcirc $\forall a, b \in E : (a, b) \notin R$

(conflict-freeness)

 $\forall a, b ((a, b) \in R \land b \in E \rightarrow \exists c \in E : (c, a) \in R)$

(defense)

$$ad(F) = \{\emptyset, \{a_1\}, \{a_2\}, \{a_4\}, \{a_5\}, \{a_1, a_2\}, \{a_1, a_4\}, \{a_1, a_5\}, \{a_2, a_4\}, \{a_4, a_5\}, \{a_1, a_2, a_4\}, \{a_1, a_4, a_5\}\}$$

Definition

Admissible semantics is a total function

$$ad: \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad(F) \subseteq 2^{A}.$$

 $E \in ad(F)$ iff

(conflict-freeness)

(defense)

$$ad(F) = \{\emptyset, \{a_1\}, \{a_2\}, \{a_4\}, \{a_5\}, \{a_1, a_2\}, \{a_1, a_4\}, \{a_1, a_5\}, \{a_2, a_4\}, \{a_4, a_5\}, \{a_1, a_2, a_4\}, \{a_1, a_4, a_5\}\}$$

Definition

Admissible semantics is a total function

$$ad: \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad(F) \subseteq 2^{A}.$$

 $E \in ad(F)$ iff

 \bigcirc $\forall a, b \in E : (a, b) \notin R$

- (conflict-freeness)
- 2 $\forall a, b \ ((a, b) \in R \land b \in E \rightarrow \exists c \in E : (c, a) \in R)$ (defense)

Example (Rule-based Formalism)

1. Knowledge Base

 $r_1: \Rightarrow a$

 $r_2: a \Rightarrow b$ $r_3: b \rightarrow not a$

 $r_4: \rightarrow c$

*1*₄ . → 0

 $r_5: c \Rightarrow not b$

Example (Rule-based Formalism)

 a_1 claims a justified by r_1 a_2 claims b justified by a_1 and r_2

Reconstruction via Argumentation

Example (Rule-based Formalism)

Reconstruction via Argumentation

Example (Rule-based Formalism)

Reconstruction via Argumentation

Example (Rule-based Formalism)

Reconstruction, Explanation via Argumentation

Example (Rule-based Formalism) 1. Knowledge Base 2. Arguments 3. Conflicts $\Rightarrow a$ $a_1: [r_1 | a]$ C1: a₁ attacks a₃ r_1 : $a_2: [a_1, r_2 | b]$ $r_2: a \Rightarrow b$ $C_2, C_3:$ a₂ attacks a₃, a₅ $c_4, c_5, c_6, c_7: a_3$ attacks a_1, a_2, a_3, a_5 $r_3: b \rightarrow not a$ $a_3: [a_2, r_3 | not a]$ $a_4: [r_4 \mid c]$ $r_4: \rightarrow c$ a₄ attacks no-one $r_5: c \Rightarrow not b$ *c*₈, *c*₉: $a_5: [a_4, r_5 | not b]$ a_5 attacks a_2 , a_3 4. Instantiation 5. Resolving 6. Conclusion $E_1 = \{a, b, c\}$ $E_1 = \{a_1, a_2, a_4\}$ $E_2 = \{a, c, not b\}$ $E_2 = \{a_1, a_4, a_5\}$ Conc = $\{a,c\}$ a_4

Explainability

EU's General Data Protection Regulation, 2018

"...establishes a right for all individuals to obtain meaningful explanations of the logic involved when automated (algorithmic) decision making takes place."

Explainability

EU's General Data Protection Regulation, 2018

"...establishes a right for all individuals to obtain meaningful explanations of the logic involved when automated (algorithmic) decision making takes place."

German Al strategy, 2020

"...making AI explainable, accountable, and transparent is the key to winning over the public's trust. There are, however, a larger number of applications where the technology is still a black box..."

Reconstruction, Explanation, Semantics via Argumentation

Example (Rule-based Formalism) 1. Knowledge Base 2. Arguments 3. Conflicts C1: $\Rightarrow a$ $a_1: [r_1 | a]$ a₁ attacks a₃ r_1 : $r_2: a \Rightarrow b$ $a_2: [a_1, r_2 | b]$ C_2, C_3 : a₂ attacks a₃, a₅ $r_3: b \rightarrow not a$ $a_3: [a_2, r_3 | not a]$ $c_4, c_5, c_6, c_7: a_3$ attacks a_1, a_2, a_3, a_5 $a_4: [r_4 \mid c]$ $r_4: \rightarrow c$ a₄ attacks no-one *C*₈, *C*₉: $r_5: c \Rightarrow not b$ $a_5: [a_4, r_5 | not b]$ a_5 attacks a_2 , a_3 4. Instantiation 5. Resolving 6. Conclusion $E_1 = \{a, b, c\}$ $E_1 = \{a_1, a_2, a_4\}$ $E_2 = \{a, c, not b\}$ $E_2 = \{a_1, a_4, a_5\}$ Conc = $\{a,c\}$ a_4

Some Contributions:

$$S = \{a, a \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$S = \{a, a \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$S = \{a, a \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$S = \{a, a \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg \top \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$S = \{a, a \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \to b, \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg b \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg \top \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \bot \lor c, e \land f \to d, d \leftrightarrow e\}$$

$$S = \{a, a \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \neg \tau \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \tau \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \tau \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \tau \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$S = \{a, a \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg \top \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \bot \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , c \qquad , e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , c \qquad , d \land f \rightarrow d, d \leftrightarrow e\}$$

$$S = \{a, a \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \neg \top \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , \bot \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , c \qquad , e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , c \qquad , d \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , c \qquad , d \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b \qquad , c \qquad , T \qquad , d \leftrightarrow e\}$$

$$S = \{a, a \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, \top \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, c, c, e \land f \rightarrow d, d \leftrightarrow e\}$$

$$\equiv \{a, b, c, c, d \rightarrow e\}$$

$$\equiv \{a, b, c, d \leftrightarrow e\}$$

$$\equiv \{a, b, c, d \leftrightarrow e\}$$

Example (Propositional Logic)

$$S = \{a, a \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\} \text{ and } T = \{a, b, c, d \leftrightarrow e\}$$

are equivalent, i.e. Mod(S) = Mod(T).

Example (Propositional Logic)

$$S = \{a, a \rightarrow b, \neg b \lor c, e \land f \rightarrow d, d \leftrightarrow e\}$$
 and $T = \{a, b, c, d \leftrightarrow e\}$

are equivalent, i.e. Mod(S) = Mod(T). Moreover, they are even strongly equivalent, i.e.

For each H, we have: $Mod(S \cup H) = Mod(T \cup H)$.

Proof:
$$Mod(S \cup H) = Mod(S) \cap Mod(H)$$

= $Mod(T) \cap Mod(H)$
= $Mod(T \cup H)$

• Argumentation semantics σ does not possess the intersection property, i.e.

$$\sigma(F \sqcup H) \neq \sigma(F) \cap \sigma(H)$$
 is possible.

• Argumentation semantics σ does not possess the intersection property, i.e.

$$\sigma(F \sqcup H) \neq \sigma(F) \cap \sigma(H)$$
 is possible.

- but, so-called kernels guarantee strong equivalence
- admissible kernel deletes an attack $(a, b) \in R$ if

$$a \neq b, (a, a) \in R, \{(b, a), (b, b)\} \cap R \neq \emptyset$$

Example (Rule-based Formalism,

2. Arguments

 $egin{aligned} a_1 : & [r_1 \mid a] \\ a_2 : & [a_1, r_2 \mid b] \\ a_3 : & [a_2, r_3 \mid not \mid a] \\ a_4 : & [r_4 \mid c] \\ a_5 : & [a_4, r_5 \mid not \mid b] \end{aligned}$

3. Conflicts

 $c_1:$ a_1 attacks a_3 $c_2, c_3:$ a_2 attacks a_3, a_5 $c_4, c_5, c_6, c_7:$ a_3 attacks a_1, a_2, a_3, a_5 a_4 attacks no-one $c_8, c_9:$ a_5 attacks a_2, a_3

Example (Rule-based Formalism, strong equivalence)

Example (strong expansion equivalence)

A 25 year old problem

"An interesting topic of research is the problem of self-defeating arguments as illustrated in the following example.

The only admissible extension here is empty though one can argue that since a defeats itself, b should be acceptable."

[Dung, 1995]

Definition

Weak Admissibility semantics is a total function

$$ad^w: \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad^w(F) \subseteq 2^A.$$

$$E \in ad^w(F)$$
 iff

Definition

Weak Admissibility semantics is a total function

$$ad^w : \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad^w(F) \subseteq 2^A.$$

 $E \in ad^{w}(F)$ iff

- E is conflict-free, and
- ② for any attacker y of E we have $y \notin \bigcup ad^{w}(F^{E})$.

 F^E is the AF F restricted to $A \setminus (E \cup E^+)$ (E-reduct)

Definition

Weak Admissibility semantics is a total function

$$ad^w : \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad^w(F) \subseteq 2^A.$$

 $E \in ad^{w}(F)$ iff

- E is conflict-free, and
- of for any attacker y of E we have $y \notin \bigcup ad^w(F^E)$.

 F^E is the AF F restricted to $A \setminus (E \cup E^+)$ (E-reduct)

recursive definition

Definition

Weak Admissibility semantics is a total function

$$ad^w : \mathcal{F} \to 2^{2^{\mathcal{U}}} \quad F = (A, R) \mapsto ad^w(F) \subseteq 2^A.$$

 $E \in ad^w(F)$ iff

- E is conflict-free, and
- any attacker y is counter-attacked or itself not acceptable

 F^E is the AF F restricted to $A \setminus (E \cup E^+)$ (E-reduct)

main idea

Definition

- E is conflict-free, and
- 2 any attacker y is counter-attacked or itself not acceptable

Is $E = \{b\}$ weakly admissible in F?

Definition

- E is conflict-free, and
- 2 any attacker y is counter-attacked or itself not acceptable.

Is $E = \{b\}$ weakly admissible in F?

Definition

E is conflict-free, and

2 any attacker y is counter-attacked or itself not acceptable.

Yes, if a is not contained in a weakly admissible set of F^E .

Definition

- E is conflict-free, and
- 2 any attacker y is counter-attacked or itself not acceptable.

Yes, if a is not contained in a weakly admissible set of F^E .

Definition

E is conflict-free, and

2 any attacker y is counter-attacked or itself not acceptable.

Is $E = \{d\}$ weakly admissible in F?

Definition

- E is conflict-free, and
- 2 any attacker y is counter-attacked or itself not acceptable.

Yes, if c is not contained in a w-admissible set of F^E .

Definition

E is conflict-free, and

2 any attacker *y* is counter-attacked or itself not acceptable.

Yes, if b is contained in a w-admissible set of $(F^E)^{\{c\}}$.

Recursiveness in action

Definition

- E is conflict-free, and
- 2 any attacker y is counter-attacked or itself not acceptable.

Yes, $E = \{d\}$ is weakly admissible in F.

For interested students

Two lectures dealing with the presented topics.

- lecture "Nichtmonotones Schließen" 2+1, winter term
- lecture "Formale Argumentation" 2+1, summer term

Argumentation, a phenomenon we are all familiar with, arises in response to, or in anticipation of, a real or imagined difference of opinion.

[van Eemeren and Verheij, 2017]

Argumentation, a phenomenon we are all familiar with, arises in response to, or in anticipation of, a real or imagined difference of opinion.

[van Eemeren and Verheii, 2017]

dialogues, persuasion, negotiation, decision making . . .

Argumentation, a phenomenon we are all familiar with, arises in response to, or in anticipation of, a real or imagined difference of opinion.

[van Eemeren and Verheii, 2017]

dialogues, persuasion, negotiation, decision making . . .

Computational argumentation deals with formal models of an argument as well as approaches and techniques formalizing inference on the basis of arguments.

Limitations of Dung AFs

They cannot express:

- support between arguments
- collective attacks
- attacks on attacks
- values
- preferences
- . . .

Limitations of Dung AFs

They cannot express:

- support between arguments
- collective attacks
- attacks on attacks
- values
- preferences
- . . .

⇒ need for more expressive frameworks

- most powerful generalization of Dung AFs
- use acceptance conditions instead of attack arcs

- most powerful generalization of Dung AFs
- use acceptance conditions instead of attack arcs

- most powerful generalization of Dung AFs
- use acceptance conditions instead of attack arcs

"Grandma lives in a suburb of Paris, which would be a stop on the train route."

semantics rely on the C_D-operator

Definition

For an ADF D = (S, P) we define $C_D : V_3^D \mapsto V_3^D$ as

$$C_D(v): S \mapsto \{t, f, u\} \text{ with } s \mapsto \sqcap_i \{w(\phi_s) \mid w \in [v]_2^D\}.$$

semantics rely on the C_D-operator

Definition

For an ADF D = (S, P) we define $C_D : \mathcal{V}_3^D \mapsto \mathcal{V}_3^D$ as

$$C_D(v): S \mapsto \{t, f, u\} \text{ with } s \mapsto \sqcap_i \{w(\phi_s) \mid w \in [v]_2^D\}.$$

- $V_3^D = \{v \mid v : S \to \{t, t, u\}\}$ (three-valued interpretation)
- the information order $<_i$ is defined as: $u <_i t$ and $u <_i t$
- \leq_i is the reflexive closure and \sqcap_i is the consensus, i.e.

$$t \sqcap_i t = t$$
, $f \sqcap_i f = f$, and u otherwise

• $\lceil v \rceil_2^D = \{ w \mid w : S \rightarrow \{t, f\}, v \leq_i w \}$ (two-valued completions)

• semantics rely on the C_D -operator

Definition

For an ADF D=(S,P) we define $\mathcal{C}_D:\mathcal{V}_3^D\mapsto\mathcal{V}_3^D$ as

$$C_D(v): S \mapsto \{t, f, u\} \text{ with } s \mapsto \sqcap_i \{w(\phi_s) \mid w \in [v]_2^D\}.$$

Definition

Given an ADF D = (S, P) and $v \in V_3^D$.

- $v \in ad(D)$ iff $v \leq_i C_D(v)$,
- 2 $v \in co(D)$ iff $v = C_D(v)$,
- ③ $v \in pr(D)$ iff v is $≤_i$ -maximal in co(D), and
- $v \in gr(D)$ iff v is \leq_i -least in co(D).

Expressive Argumentation - Planned Research Topics

- New Semantics and Functionalities weak admissibility, weak defense, time, modality
- Foundations realizability, replaceability, intertranslatability, modularity
- Dynamics revision, contraction, expansion, enforcing, forgetting
- Algorithms algorithm design and implementation of prototype systems

Q: Is there a three-valued logic \mathcal{L}_3 , s.t. for any formula ϕ , any three-valued $v: v^{\mathcal{L}_3}(\phi) = \prod_i \{w(\phi) \mid w \in [v]_2^D\}$?

2010, Abstract Dialectical Frameworks, G. Brewka and S. Woltran

Q: Is there a three-valued logic \mathcal{L}_3 , s.t. for any formula ϕ , any three-valued $v: v^{\mathcal{L}_3}(\phi) = \prod_i \{w(\phi) \mid w \in [v]_2^D\}$?

A1: There is no truth-functional three-valued logic \mathcal{L}_3 .

2010, Abstract Dialectical Frameworks, G. Brewka and S. Woltran 2020, Timed Abstract Dialectical Frameworks, R. Baumann and M. Heinrich

Q: Is there a three-valued logic \mathcal{L}_3 , s.t. for any formula ϕ , any three-valued $v: v^{\mathcal{L}_3}(\phi) = \prod_i \{w(\phi) \mid w \in [v]_2^D\}$?

A1: There is no truth-functional three-valued logic \mathcal{L}_3 .

A2: There is a non-truth-functional three-valued logic, so-called Possibilistic Logic.

- 2010, Abstract Dialectical Frameworks, G. Brewka and S. Woltran
- 2020, Timed Abstract Dialectical Frameworks, R. Baumann and M. Heinrich
- 2022, Possibilistic Logic Underlies Abstract Dialectical Frameworks, J. Heynick, G. Kern-Isberner and M. Thimm

Q: Is there a three-valued logic \mathcal{L}_3 , s.t. for any formula ϕ , any three-valued $v: v^{\mathcal{L}_3}(\phi) = \prod_i \{w(\phi) \mid w \in [v]_2^D\}$?

A1: There is no truth-functional three-valued logic \mathcal{L}_3 .

A2: There is a non-truth-functional three-valued logic, so-called Possibilistic Logic.

A3: There is a truth-functional three-valued logic, so-called Kleene's Strong Logic, if considering bipolar formulae only.

- 2010. Abstract Dialectical Frameworks, G. Brewka and S. Woltran
- 2020, Timed Abstract Dialectical Frameworks, R. Baumann and M. Heinrich
- 2022, Possibilistic Logic Underlies Abstract Dialectical Frameworks, J. Heynick, G. Kern-Isberner and M. Thimm
- 2023, Bipolar Abstract Dialectical Frameworks are covered by Kleene's 3-valued Logic, R. Baumann and M. Heinrich

From Non-monotonic Logics to Abstract Argumentation

Results and Perspectives

Antrittsvorlesung
Professur für Formale Argumentation
und Logisches Schließen

4th December 2023 Leipzig

