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Monotonic vs. Non-monotonic Logics

do not allow for a retraction of inferences, i.e.

If S ⊆ T , then Cn(S) ⊆ Cn(T ).

If S ⊆ T and S ⊧ φ, then T ⊧ φ.

propositional logic, first-order logic, intuitionistic logic, . . .

monotonic reasoning is good for mathematics

Example: group axioms, uniqueness of the neutral element
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Monotonic vs. Non-monotonic Logics

represent defeasible inference, i.e.

S ⊆ T and Cn(S) /⊆ Cn(T ) is possible.

S ⊆ T , S ⊧ φ and T /⊧ φ is possible.

default logic, circumscription, autoepistemic logic, . . .

reason: incomplete and/or uncertain information

defeasible reasoning is the reasoning mode for “daily life”

+ draw conclusions defeasibly
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Monotonic vs. Non-monotonic Logics

Draw conclusions based on normality assumptions.

Professors teach . . . unless they are on sabbatical.

Birds fly . . . unless they are penguins.

Owls hunt at night . . . unless they live in a zoo.

Students don’t like the 7th and 8th period . . . unless it’s their
favorite subject.

Waiting for two hours at the doctor’s office is frustrating . . .
unless you are close to finish a proof.

The human heart is on the left side . . . unless one has
dextrocardia.

Kids like ice cream . . . unless no exceptions!
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Non-monotonic Logics

Example (Rule-based Formalism)
1. Knowledge Base

r1 ∶ ⇒ a
r2 ∶ a⇒ b
r3 ∶ b → not a
r4 ∶ → c
r5 ∶ c ⇒ not b

If a, then normally b.
If b, then definitely not a.

2. Conclusion

Conc = {a,c}
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Towards Abstract Argumentation -
The Paradigm Shift

Seminal Paper by Phan Minh Dung,
On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic
programming and n- person games, AIJ, 1995.

Two main ideas:

1 non-monotonic reasoning can be modelled as a kind of
argumentation

2 determining the acceptability of arguments can be done on
an abstract level
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Abstract away from

the internal structure of arguments, and (nodes)

a1

a2

a3

a4

a5
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How to select reasonable positions?

a1

a2

a3

a4

a5

Definition
A semantics is a total function

σ ∶ F → 22U F = (A,R) ↦ σ(F) ⊆ 2A.

(F - set of all AFs)
(U - set of all arguments)
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Semantics (select reasonable positions)

a1

a2

a3

a4

a5
ad(F) = {∅,{a1},{a2},
{a4},{a5},{a1,a2},
{a1,a4},{a1,a5},
{a2,a4},{a4,a5},
{a1,a2,a4},{a1,a4,a5}}

Definition
Admissible semantics is a total function

ad ∶ F → 22U F = (A,R) ↦ ad(F) ⊆ 2A.

E ∈ ad(F) iff

1 ∀a,b ∈ E ∶ (a,b) ∉ R (conflict-freeness)
2 ∀a,b ((a,b) ∈ R ∧ b ∈ E → ∃c ∈ E ∶ (c,a) ∈ R) (defense)
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Reconstruction via Argumentation

Example (Rule-based Formalism)
1. Knowledge Base

r1 ∶ ⇒ a
r2 ∶ a⇒ b
r3 ∶ b → not a
r4 ∶ → c
r5 ∶ c ⇒ not b

2. Arguments

a1 ∶ [r1 ∣ a]
a2 ∶ [a1, r2 ∣ b]
a3 ∶ [a2, r3 ∣ not a]
a4 ∶ [r4 ∣ c]
a5 ∶ [a4, r5 ∣ not b]

a1 claims a justified by r1

a2 claims b justified by a1 and r2
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Reconstruction, Explanation via Argumentation

Example (Rule-based Formalism)
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Explainability

EU’s General Data Protection Regulation, 2018

“ ...establishes a right for all individuals to obtain
meaningful explanations of the logic involved when
automated (algorithmic) decision making takes place.”

German AI strategy, 2020

“...making AI explainable, accountable, and
transparent is the key to winning over the public’s trust.
There are, however, a larger number of applications
where the technology is still a black box...”
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Reconstruction, Explanation, Semantics via Argumentation

Example (Rule-based Formalism)
1. Knowledge Base

r1 ∶ ⇒ a
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Some Contributions:

Simplification

Example (Propositional Logic)

S = {a,a→ b,¬b ∨ c,e ∧ f → d ,d ↔ e}

≡ {a,⊺ → b,¬b ∨ c,e ∧ f → d ,d ↔ e}
≡ {a,b ,¬b ∨ c,e ∧ f → d ,d ↔ e}
≡ {a,b ,¬⊺ ∨ c,e ∧ f → d ,d ↔ e}
≡ {a,b , � ∨ c,e ∧ f → d ,d ↔ e}
≡ {a,b ,c ,e ∧ f → d ,d ↔ e}
≡ {a,b ,c ,d ∧ f → d ,d ↔ e}
≡ {a,b ,c ,⊺ ,d ↔ e}
≡ {a,b,c,d ↔ e} = T
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Some Contributions: Simplification

Example (Propositional Logic)

S = {a,a→ b,¬b ∨ c,e ∧ f → d ,d ↔ e} and
T = {a,b,c,d ↔ e}

are equivalent, i.e. Mod(S) = Mod(T ).

Moreover, they are even strongly equivalent, i.e.

For each H, we have: Mod(S ∪H) = Mod(T ∪H).

Proof: Mod(S ∪H) = Mod(S) ∩Mod(H)
= Mod(T ) ∩Mod(H)
= Mod(T ∪H)
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Some Contributions: Simplification

Argumentation semantics σ does not possess the
intersection property, i.e.

σ (F ⊔H) ≠ σ(F) ∩ σ(H) is possible.

but, so-called kernels guarantee strong equivalence
admissible kernel deletes an attack (a,b) ∈ R if

a ≠ b, (a,a) ∈ R, {(b,a), (b,b)} ∩R ≠ ∅
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Some Contributions: Simplification

Example (Rule-based Formalism,

strong equivalence

)
1. Knowledge Base

r1 ∶ ⇒ a
r2 ∶ a⇒ b
r3 ∶ b → not a
r4 ∶ → c
r5 ∶ c ⇒ not b

2. Arguments

a1 ∶ [r1 ∣ a]
a2 ∶ [a1, r2 ∣ b]
a3 ∶ [a2, r3 ∣ not a]
a4 ∶ [r4 ∣ c]
a5 ∶ [a4, r5 ∣ not b]

3. Conflicts

c1 ∶ a1 attacks a3

c2,c3 ∶ a2 attacks a3,a5

c4,c5,c6,c7 ∶ a3 attacks a1,a2,a3,a5

a4 attacks no-one
c8,c9 ∶ a5 attacks a2,a3

4. Instantiation
.
.
.
.
.
.
.
.

a1

a2

a3

a4

a5

5. Simplification
.
.
.
.
.
.
.
.

a1

a2

a3

a4

a5
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Some Contributions: Simplification

Example (strong expansion equivalence)
1. Knowledge Base

r1 ∶ ⇒ a
r2 ∶ a⇒ b
r3 ∶ b → not a
r4 ∶ → c
r5 ∶ c ⇒ not b

2. Arguments

a1 ∶ [r1 ∣ a]
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a3 ∶ [a2, r3 ∣ not a]
a4 ∶ [r4 ∣ c]
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4. Instantiation
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Some Contributions: Odd-cycles

A 25 year old problem

“An interesting topic of research is the problem of
self-defeating arguments as illustrated in the following
example.

a b

The only admissible extension here is empty though
one can argue that since a defeats itself, b should be
acceptable.”

[Dung, 1995]
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Some Contributions: Odd-cycles

Definition
Weak Admissibility semantics is a total function

adw ∶ F → 22U F = (A,R) ↦ adw(F) ⊆ 2A.

E ∈ adw(F) iff

1 E is conflict-free, and
2 for any attacker y of E we have y ∉ ⋃adw (F E).

F E is the AF F restricted to A ∖ (E ∪E+) (E-reduct)

KR 2020, Comparing Weak Admissibility Semantics to their Dung-style Counterparts - Reduct, Modularization and

Strong Equivalence, R. Baumann, G. Brewka and M. Ulbricht (Ray Reiter Best Paper Award)
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adw ∶ F → 22U F = (A,R) ↦ adw(F) ⊆ 2A.

E ∈ adw(F) iff
1 E is conflict-free, and
2 for any attacker y of E we have y ∉ ⋃adw (F E).

F E is the AF F restricted to A ∖ (E ∪E+) (E-reduct)

+ recursive definition

KR 2020, Comparing Weak Admissibility Semantics to their Dung-style Counterparts - Reduct, Modularization and

Strong Equivalence, R. Baumann, G. Brewka and M. Ulbricht (Ray Reiter Best Paper Award)
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Some Contributions: Odd-cycles

Definition
Weak Admissibility semantics is a total function

adw ∶ F → 22U F = (A,R) ↦ adw(F) ⊆ 2A.

E ∈ adw(F) iff
1 E is conflict-free, and
2 any attacker y is counter-attacked or itself not acceptable

F E is the AF F restricted to A ∖ (E ∪E+) (E-reduct)

+ main idea

KR 2020, Comparing Weak Admissibility Semantics to their Dung-style Counterparts - Reduct, Modularization and

Strong Equivalence, R. Baumann, G. Brewka and M. Ulbricht (Ray Reiter Best Paper Award)
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Recursiveness in action

Definition
1 E is conflict-free, and

2 any attacker y is counter-attacked or itself not acceptable

aF ∶ b

Is E = {b} weakly admissible in F?
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Recursiveness in action

Definition
1 E is conflict-free, and 4

2 any attacker y is counter-attacked or itself not acceptable. -
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Recursiveness in action

Definition
1 E is conflict-free, and 4

2 any attacker y is counter-attacked or itself not acceptable. -

a

b

c(F E){c} ∶

Yes, if b is contained in a w-admissible set of (F E)
{c}.
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Recursiveness in action

Definition
1 E is conflict-free, and 4

2 any attacker y is counter-attacked or itself not acceptable. 4

a

b

cF ∶ d

Yes, E = {d} is weakly admissible in F .

39 / 49



For interested students

Two lectures dealing with the presented topics.

1 lecture “Nichtmonotones Schließen”
2+1, winter term

2 lecture “Formale Argumentation”
2+1, summer term
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Beyond Reconstruction

Argumentation, a phenomenon we are all familiar with, arises in
response to, or in anticipation of, a real or imagined difference of
opinion.

[van Eemeren and Verheij, 2017]

dialogues, persuasion, negotiation, decision making . . .

Computational argumentation deals with formal models of an
argument as well as approaches and techniques formalizing
inference on the basis of arguments.
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Limitations of Dung AFs

They cannot express:

support between arguments

collective attacks

attacks on attacks

values

preferences
. . .

⇒ need for more expressive frameworks
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support between arguments

collective attacks
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values

preferences
. . .

⇒ need for more expressive frameworks
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Abstract Dialectical Frameworks

most powerful generalization of Dung AFs
use acceptance conditions instead of attack arcs

train planeVegasParis
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Abstract Dialectical Frameworks

semantics rely on the CD-operator

Definition
For an ADF D = (S,P) we define CD ∶ VD

3 ↦ VD
3 as

CD(v) ∶ S ↦ {t , f ,u} with s ↦ ⊓i {w(φs) ∣ w ∈ [v]D
2 } .

VD
3 = {v ∣ v ∶ S → {t , f ,u}} (three-valued interpretation)

the information order <i is defined as: u <i t and u <i f
≤i is the reflexive closure and ⊓i is the consensus, i.e.

t ⊓i t = t , f ⊓i f = f , and u otherwise

[v]D
2 = {w ∣ w ∶ S → {t , f} ,v ≤i w} (two-valued completions)
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Abstract Dialectical Frameworks

semantics rely on the CD-operator

Definition
For an ADF D = (S,P) we define CD ∶ VD

3 ↦ VD
3 as

CD(v) ∶ S ↦ {t , f ,u} with s ↦ ⊓i {w(φs) ∣ w ∈ [v]D
2 } .

Definition

Given an ADF D = (S,P) and v ∈ VD
3 .

1 v ∈ ad(D) iff v ≤i CD(v),
2 v ∈ co(D) iff v = CD(v),
3 v ∈ pr(D) iff v is ≤i -maximal in co(D), and
4 v ∈ gr(D) iff v is ≤i -least in co(D).
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Expressive Argumentation -
Planned Research Topics

1 New Semantics and Functionalities
weak admissibility, weak defense, time, modality

2 Foundations
realizability, replaceability, intertranslatability, modularity

3 Dynamics
revision, contraction, expansion, enforcing, forgetting

4 Algorithms
algorithm design and implementation of prototype systems
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Computation of the Consensus

Q: Is there a three-valued logic L3, s.t. for any formula
φ, any three-valued v: vL3(φ) = ⊓i {w(φ) ∣ w ∈ [v]D

2 }?

A1: There is no truth-functional three-valued logic L3.

A2: There is a non-truth-functional three-valued logic,
so-called Possibilistic Logic.

A3: There is a truth-functional three-valued logic,
so-called Kleene’s Strong Logic, if considering bipolar
formulae only.

2010, Abstract Dialectical Frameworks, G. Brewka and S. Woltran

2020, Timed Abstract Dialectical Frameworks, R. Baumann and M. Heinrich
2022, Possibilistic Logic Underlies Abstract Dialectical Frameworks, J. Heynick, G. Kern-Isberner and M. Thimm
2023, Bipolar Abstract Dialectical Frameworks are covered by Kleene’s 3-valued Logic, R. Baumann and M. Heinrich
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